
Provenance for SPARQL queries

C. V. Damásio1 and A. Analyti2 and G. Antoniou3

1 CENTRIA, Departamento de Informática Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.

cd@fct.unl.pt
2 Institute of Computer Science, FORTH-ICS, Crete, Greece

analyti@ics.forth.gr
3 Institute of Computer Science, FORTH-ICS, and

Department of Computer Science, University of Crete, Crete, Greece
antoniou@ics.forth.gr

Abstract. Determining trust of data available in the Semantic Web
is fundamental for applications and users, in particular for linked open
data obtained from SPARQL endpoints. There exist several proposals in
the literature to annotate SPARQL query results with values from ab-
stract models, adapting the seminal works on provenance for annotated
relational databases. We provide an approach capable of providing prove-
nance information for a large and significant fragment of SPARQL 1.1,
including for the first time the major non-monotonic constructs under
multiset semantics. The approach is based on the translation of SPARQL
into relational queries over annotated relations with values of the most
general m-semiring, and in this way also refuting a claim in the literature
that the OPTIONAL construct of SPARQL cannot be captured appropri-
ately with the known abstract models.

Keywords: How-provenance, SPARQL queries, m-semirings, difference

1 Introduction

A general data model for annotated relations has been introduced in [9], for posi-
tive relational algebra (i.e. excluding the difference operator). These annotations
can be used to check derivability of a tuple, lineage, and provenance, perform
query evaluation of incomplete database, etc. The main concept is the notion
of K-relations where tuples are annotated with values (tags) of a commutative
semiring K, while positive relational algebra operators semantics are extended
and captured by corresponding compositional operations over K. The obtained
algebra on K-relations is expressive enough to capture different kinds of anno-
tations with set or bag semantics, and the authors show that the semiring of
polynomials with integer coefficients is the most general semiring. This means
that to evaluate queries for any positive algebra query on an arbitrary semiring,
one can evaluate the query in the semiring of polynomials (factorization property
of [9]). This work has been extended to the case of full relational algebra in [8]

by considering the notion of semirings with a monus operation (m-semirings [2])
and constant annotations, and the factorization property is proved for the special
m-semiring that we denote by Kdprovd.

The use of these abstract models based on K-relations to express provenance
in the Semantic Web has been advocated in [12]. However, the authors claim that
the existing m-semirings are not capable to capture the appropriate provenance
information for SPARQL queries. This claim is supported by the authors using
a simple example, which we have adapted to motivate our work:

Example 1. Consider the following RDF graph expressing information about
users’ accounts and homepages, resorting to the FOAF vocabulary:

@prefix people: <http://people/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
people:david foaf:account <http://bank> .
people:felix foaf:account <http://games> .
<http://bank> foaf:accountServiceHomepage <http://bank/yourmoney>.

The SPARQL query
PREFIX foaf <http://xmlns.com/foaf/0.1/>
SELECT *
WHERE { ?who foaf:account ?acc .

OPTIONAL { ?acc foaf:accountServiceHomepage ?home }
}

returns the solutions (mappings of variables):
?who ?acc ?home
<http://people/david> <http://bank> <http://bank/yourmoney>
<http://people/felix> <http://games>

However, if the last triple is absent from the graph then the solutions are instead:

?who ?acc ?home
<http://people/david> <http://bank>
<http://people/felix> <http://games>

In order to track provenance of data, each tuple of data can be tagged with
an annotation of a semiring. This annotation can be a boolean, e.g. to annotate
that the tuple is trusted or not, a set of identifiers of tuples returning lineage of
the tuple, or more complex annotations like the polynomials semiring to track
full how-provenance [9, 8], i.e. how a tuple is generated in the result under bag
semantics.

Returning to the introductory example, assume that we represent the 3 triples
in the input RDF graph as the ternary Kdprovd-relation (with the obvious ab-
breviations), where the last column contains the triple identifier (annotation):

Triples

sub pred obj

<david> <account> <bank> t1
<felix> <account> <games> t2
<bank> <accountServiceHomepage> <bank/yourmoney> t3

2

The expected annotation of the first solution of the SPARQL query is t1 × t3,
meaning that the solution was obtained by joining triples identified by t1 and t3,
while for the second solution the corresponding annotation is simply t2. How-
ever, if we remove the last tuple we obtain a different solution for david with
annotation just t1. The authors in [12] explain why the existing approaches to
provenance for the Semantic Web cannot handle the situation of Example 1,
basically because there are different bindings of variables depending on the ab-
sence/presence of triples, and it is claimed that the m-semiring Kdprovd also
cannot handle it. The rest of our paper shows that this last claim is wrong,
but that requires some hard work and long definitions since the method pro-
posed relies on the translation of SPARQL queries into relational algebra. The
result is the first approach that provides adequate provenance information for
OPTIONAL, MINUS and NOT EXISTS constructs under the multiset (bag) semantics
of SPARQL.

The organization of the paper is the following. We review briefly in the next
section the basics of K-relations. The SPARQL semantics is introduced in Sec-
tion 3, and its translation into relational algebra is the core of the paper and can
be found in Section 4. Using the relational algebra translation of SPARQL, we
use Kdprovd to annotate SPARQL queries and show in Section 5 that Example 1
is properly handled. We finish with some comparisons and conclusions.

2 Provenance for K-relations

A commutative semiring is an algebraic structure K = (K,⊕,⊗, 0, 1) where
(K,⊕, 0) is a commutative monoid (⊕ is associative and commutative) with
identity element 0, (K,⊗, 1) is a commutative monoid with identity element 1,
the operation ⊗ distributes over ⊕, and 0 is the annihilating element of ⊗. In
general, a tuple is a function t : U → D where U is a finite set of attributes
and D is the domain of values, which is assumed to be fixed. The set of all such
tuples is U -Tup and usual relations are subsets of U -Tup. A K-relation over U is
a function R : U -Tup→ K, and its support is supp(R) = {t | R(t) 6= 0}.

In order to cover the full relational operators, the authors in [8] assume
that the K semiring is naturally ordered (i.e. binary relation x � y is a partial
order, where x � y iff there exists z ∈ K such that x ⊕ z = y), and require
additionally that for every pair x and y there is a least z such that x � y ⊕ z,
defining in this way x	y to be such smallest z. A K semiring with such a monus
operator is designated by m-semiring. Moreover, in order to capture duplicate
elimination, the authors assume that the m-semiring is finitely generated. The
query language4 RA+

K(−, δ) has the following operators [8]:

empty relation: For any set of attributes U , we have ∅ : U -Tup→ K such that
∅(t) = 0 for any t.

union If R1, R2 : U -Tup→ K then R1 ∪R2 : U -Tup→ K is defined by:
(R1 ∪R2)(t) = R1(t)⊕R2(t).

4 The authors use instead the notation RA+
K(\, δ).

3

projection If R : U -Tup→ K and V ⊆ U then ΠV (R) : V -Tup→ K is defined
by (ΠV (R)) (t) =

⊕
t=t′ on V and R(t′) 6=0R(t′).

selection: If R : U -Tup → K and the selection predicate P maps each U -tuple
to either 0 or 1 depending on the (in-)equality of attribute values, then
σP (R) : U -Tup→ K is defined by (σP (R)) (t) = R(t)⊗ P (t).

natural join If Ri : Ui-Tup → K, for i = 1, 2, then R1 on R2 is the K-relation
over U1 ∪ U2 defined by (R1 on R2)(t) = R1(t)⊗R2(t).

renaming If R : U -Tup → K and β : U → U ′ is a bijection then ρβ(R) is the
K-relation over U ′ defined by (ρβ(R))(t) = R(t ◦ β−1).

difference: If R1, R2 : U -Tup→ K then R1 −R2 : U -Tup→ K is defined by:
(R1 −R2)(t) = R1(t)	R2(t).

constant annotation: If R : U -Tup → K and ki is a generator of K then
δki : U -Tup → K is defined by (δki(R))(t) = ki for each t ∈ supp(R) and
(δki(R))(t) = 0 otherwise.

One major result of [8] is that the factorization property can be obtained
for RA+

K(−, δ) by using a special m-semiring with constant annotations that
we designate by Kdprovd. Kdprovd is the free m-semiring over the set of source
tuple ids X, which is a free algebra generated by the set of (tuple) identifiers in
the equational variety of m-semirings. Elements of Kdprovd are therefore terms
defined inductively as: identifiers in X, 0, and 1 are terms; if s and t are terms
then (s + t), (s × t), (s − t), and δki

(t) are terms, and nothing else is a term.
In fact annotations of Kdprovd are elements of the quotient structure of the free
terms with respect to the congruence relation induced by the axiomatization
of the m-semirings, in order to guarantee the factorization property (see [8] for
more details). In our approach, X will be the set of graph and tuple identifiers.

We slightly extend the projection operator, by introducing new attributes
whose value can be computed from the other attributes. In our approach, this is
simply syntactic sugar since the functions we use are either constants or return
one of the values in the arguments.

3 SPARQL semantics

The current draft of SPARQL 1.1 [1] defines the semantics of SPARQL queries
via a translation into SPARQL algebra operators, which are then evaluated with
respect to a given RDF dataset. In this section, we overview an important frag-
ment corresponding to an extension of the work in [10] that presents the formal
semantics of the first version of SPARQL. The aim of our paper is on the treat-
ment of non-monotonic constructs of SPARQL, namely OPTIONAL, MINUS
and NOT EXISTS, and thus we focus in the SELECT query form, ignoring
property paths, GROUP graph patterns and aggregations, as well as solution
modifiers. The extension of our work to consider all the graph patterns is direct
from the results presented. Regarding FILTER expressions, we analyse with de-
tail the EXISTS and NOT EXISTS constructs, requiring special treatment. We
assume the reader has basic knowledge of RDF and we follow closely the pre-
sentation of [1]. For more details the reader is referred to sections 17 and 18 of

4

the current SPARQL 1.1 W3C working draft. We also make some simplifying
assumptions that do not affect the results of our paper.

3.1 Basics

Consider disjoint sets of IRI (absolute) references I, blank nodesB, and literals L
including plain literals and typed literals, and an infinite set of variables V. The
set of RDF terms is T = IBL = I∪B∪L. A triple5 τ = (s, p, o) is an element of
IBL×I×IBL and a graph is a set of triples. Queries are evaluated with respect
to a given RDF Dataset D = {G, (< u1 >,G1), (< u2 >,G2), . . . , (< un >,Gn)},
where G is the default graph, and each pair (<ui>,Gi) is called a named graph,
with each IRI ui distinct in the RDF dataset, and Gi being a graph.

3.2 Graph patterns

SPARQL queries are defined by graph patterns, which are obtained by combining
triple patterns with operators. SPARQL graph patterns are defined recursively
as follows:

– The empty graph pattern ().
– A tuple (IL∪V)×(I∪V)×(IL∪V) is a graph pattern called triple pattern6;
– If P1 and P2 are graph patterns then (P1 AND P2), (P1 UNION P2), as well as

(P1 MINUS P2), and (P1 OPTIONAL P2) are graph patterns;
– If P1 is a graph pattern and R is a filter SPARQL expression7 then the

construction (P1 FILTER R) is a graph pattern;
– If P1 is a graph pattern and term is a variable or an IRI then (GRAPH term P1)

is a graph pattern.

The SPARQL 1.1 Working Draft also defines Basic Graph Patterns (BGPs),
which correspond to sets of triple patterns. A Basic Graph Pattern P1, . . . , Pn is
encoded as the graph pattern (() AND (P1 AND (P2 . . . AND Pn)) . . .). We ignore
in this presentation the semantics of FILTER expressions, whose syntax is rather
complex. For the purposes of this paper it is enough to consider that these
expressions after evaluation return a boolean value, and therefore we also ignore
errors. However, we show how to treat the EXISTS and NOT EXISTS patterns
in FILTER expressions since these require querying graph data, and therefore
provenance information should be associated to these patterns.

3.3 SPARQL algebra

Evaluation of SPARQL patterns return multisets (bags) of solution mappings.
A solution mapping, abbreviated solution, is a partial function µ : V→ T. The
5 Literals in the subject of triples are allowed, since this generalization is expected to
be adopted in the near future.

6 For simplicity, we do not allow blank nodes in triple patterns.
7 For the full syntax of filter expressions, see the W3C Working Draft [1].

5

domain of µ is the subset of variables of V where µ is defined. Two mappings
µ1 and µ2 are compatible if for every variable v in dom(µ1) ∩ dom(µ2) it is
the case that µ1(v) = µ2(v). It is important to understand that any mappings
with disjoint domain are compatible, and in particular the solution mapping
µ0 with empty domain is compatible with every solution. If two solutions µ1

and µ2 are compatible then their union µ1 ∪ µ2 is also a solution mapping. We
represent extensionally a solution mapping as a set of pairs of the form (v, t); in
the case of a solution mapping with a singleton domain we use the abbreviation
v → t. Additionally, if P is an arbitrary pattern we denote by µ(P) the result of
substituting the variables in P defined in µ by their assigned values.

We denote that solution mapping µ satisfies the filter expression R with
respect to the active graph G of dataset D by µ |=D(G) R. Including the param-
eter D(G) in the evaluation of filter expressions is necessary in order to evaluate
EXISTS(P) and NOT EXISTS(P) filter expressions, where P is an arbitrary graph
pattern. If these constructs are removed from the language, then one only needs
to consider the current solution mapping to evaluate expressions (as done in [10]).

Definition 1 (SPARQL algebra operators [1]). Let Ω1 and Ω2 be multisets
of solution mappings, and R a filter expression. Define:

Join: Ω1 ./ Ω2 = {|µ1 ∪ µ2 | µ1 ∈ Ω1 and µ2 ∈ Ω2 such that µ1 and µ2

are compatible |}
Union: Ω1 ∪Ω2 = {|µ | µ ∈ Ω1 or µ ∈ Ω2|}
Minus: Ω1 − Ω2 = {|µ1 | µ1 ∈ Ω1 such that ∀µ2∈Ω2 either µ1 and µ2 are not

compatible or dom(µ1) ∩ dom(µ2) = ∅|}
Diff: Ω1 \D(G)

R Ω2 = {|µ1 | µ1 ∈ Ω1 such that ∀µ2∈Ω2 either µ1 and µ2 are not
compatible, or µ1 and µ2 are compatible and µ1 ∪ µ2 6|=D(G) R|}

LeftJoin: Ω1 A./D(G)
R Ω2 = (Ω1 ./ Ω2) ∪ (Ω1 \D(G)

R Ω2)

The Diff operator is auxiliary to the definition of LeftJoin. The SPARQL
1.1 Working Draft also introduces the notion of sequence to provide semantics to
modifiers like ORDER BY. The semantics of the extra syntax is formalized by sev-
eral more operators, namely aggregates and sequence modifiers (e.g. ordering),
as well as property path expressions; we briefly discuss their treatment later on.
Since lists can be seen as multisets with order and, without loss of generality
regarding provenance information, we just consider multisets.

Definition 2 (SPARQL graph pattern evaluation). Let D(G) be an RDF
dataset with active graph G, initially the default graph in D(G). Let P , P1 and
P2 be arbitrary graph patterns, and t a triple pattern. The evaluation of a graph
pattern over D(G), denoted by [[.]]D(G) is defined recursively as follows:

1. [[()]]D(G) = {|µ0|};
2. [[t]]D(G) = {| µ | dom(µ) = var(t) and µ(t) ∈ G|}, where var(t) is the set of

variables occurring in the triple pattern t;
3. [[(P1 AND P2)]]D(G) = [[P1]]D(G) ./ [[P2]]D(G);
4. [[(P1 UNION P2)]]D(G) = [[P1]]D(G) ∪ [[P2]]D(G);

6

5. [[(P1 MINUS P2)]]D(G) = [[P1]]D(G) − [[P2]]D(G);

6. [[(P1 OPTIONAL P2)]]D(G) = [[P1]]D(G) A./D(G)
true [[P2]]D(G), where P2 is not a

FILTER pattern;
7. [[(P1 OPTIONAL (P2 FILTER R))]]D(G) = [[P1]]D(G) A./D(G)

R [[P2]]D(G);
8. [[(P1 FILTER R)]]D(G) = {| µ ∈ [[P1]]D(G) | µ |=D(G) R |};
9. Evaluation of [[(GRAPH term P1)]]D(G) depends on the form of term:

– If term is an IRI corresponding to a graph name ui in D(G) then
[[(GRAPH term P1)]]D(G) = [[P1]]D(Gi)

;
– If term is an IRI that does not correspond to any graph in D(G) then

[[(GRAPH term P1)]]D(G) = {||};
– If term is a variable v then [[(GRAPH term P1)]]D(G) =

= ([[P1]]D(G1)
./ {|v →<u1> |}) ∪ . . . ∪ ([[P1]]D(Gn) ./ {|v →<un> |})

The evaluation of EXISTS and NOT EXISTS is performed in the satisfies rela-
tion of filter expressions.

Definition 3. Given a solution mapping µ and a graph pattern P over an RDF
dataset D(G) then µ |=D(G) EXISTS(P) (resp. µ |=D(G) NOT EXISTS(P)) iff
[[µ(P)]]D(G) is a non-empty (resp. empty) multiset.

Example 2. The SPARQL query of Example 1 corresponds to the following
graph pattern :

Q = ((?who,<foaf : account>, ?acc) OPTIONAL
(?acc,<foaf : accountServiceHomepage>, ?home)

)

The evaluation of the query result with respect to the RDF dataset D = {G},
just containing the default graph G, specified in the example is:

[[Q]]D(G) =

[[(?who,<foaf : account>, ?acc)]]D(G) A./D(G)
true

[[(?acc,<foaf : accountServiceHomepage>, ?home)]]D(G)

= {|{(?who,<http : //people/david>), (?acc,<http : //bank>)},
{(?who,<http : //people/felix>), (?acc,<http : //games>)}|} A./D(G)

true

{|{(?acc,<http : //bank>), (?home,<http : //bank/yourmoney>)} |}
= {|{(?who,<http : //people/david>), (?acc,<http : //bank>),

(?home,<http : //bank/yourmoney>)},
{(?who,<http : //people/felix>), (?acc,<http : //games>)}
|}

The evaluation of query Q returns, as expected, two solution mappings.

7

4 Translating SPARQL algebra into relational algebra

The rationale for obtaining how-provenance for SPARQL is to represent each
solution mapping as a tuple of a relational algebra query constructed from the
original SPARQL graph pattern. The construction is intricate and fully speci-
fied, and is inspired from the translation of full SPARQL 1.0 queries into SQL,
as detailed in [6], and into Datalog in [11]. Here, we follow a similar strat-
egy but for simplicity of presentation we assume that a given RDF dataset
D = {G0, (<u1>,G1), (<u2>,G2), . . . , (<un>,Gn)} is represented by the two
relations: Graphs(gid,IRI) and Quads(gid,sub,pred,obj). The former stores
information about the graphs in the dataset D where gid is a numeric graph
identifier, and IRI an IRI reference. The relation Quads stores the triples of every
graph in the RDF dataset. Different implementations may immediately adapt
the translation provided here in this section to their own schema.

Relation Graphs(gid,IRI) contains a tuple (i, <ui>) for each named graph
(< ui >,Gi), and the tuple (0, < >) for the default graph, while relation
Quads(gid,sub,pred,obj) stores a tuple of the form (i, s, p, o) for each triple
(s, p, o) ∈ Gi8. With this encoding, the default graph always has identifier 0, and
all the graph identifiers are consecutive integers.

It is also assumed the existence of a special value unb, distinct from the en-
coding of any RDF term, to represent that a particular variable is unbound in
the solution mapping. This is required in order to be able to represent solution
mappings as tuples with fixed and known arity. Moreover, we assume that the
variables are totally ordered (e.g. lexicographically). The translation requires the
full power of relational algebra, and notice that bag semantics is assumed (du-
plicates are allowed) in order to obey to the cardinality restrictions of SPARQL
algebra operators [1].

Definition 4 (Translation of triple patterns). Let t = (s, p, o) be a triple
pattern and G an attribute. Its translation [(s, p, o)]GR into relational algebra is
constructed from relation Quads as follows:

1. Select the tuples with the conjunction obtained from the triple pattern by
letting Quads.sub = s (resp. Quads.pred = p, Quads.obj = o) if s (resp. p,
o) are RDF terms; if a variable occurs more than once in t, then add an
equality condition among the corresponding columns of Quads;

2. Rename Quads.gid as G; rename as many as Quads columns as distinct
variables that exist in t, such that there is exactly one renamed column per
variable;

3. Project in G and variables occurring in t;

The empty graph pattern is translated as [()]GR = ΠG

[
ρG←gid(Graphs)

]
.

8 For simplicity sub, pred, and obj are text attributes storing lexical forms of the
triples’ components. We assume that datatype literals have been normalized, and
blank nodes are distinct in each graph. The only constraint is that different RDF
terms must be represented by different strings; this can be easily guaranteed.

8

Example 3. Consider the following triple patterns:

t1 = (?who,<http : //xmlns.com/foaf/0.1/account>, ?acc)
t2 = (?who,<http : //xmlns.com/foaf/0.1/knows>, ?who)
t3 = (<http : //cd>,<http : //xmlns.com/foaf/0.1/name>, "Carlos"@pt)

The corresponding translations into relational algebra are:

[t1]
G
R = ΠG,acc,who

ρG← gid
acc← obj
who← sub

(
σpred=<http://xmlns.com/foaf/0.1/account>(Quads)

)
[t2]

G
R = ΠG,who

ρG← gid
who← sub

σ pred =<http : //xmlns.com/foaf/0.1/knows>
∧

sub = obj

(Quads)

[t3]
G
R = ΠG

ρG← gid

σ sub =<http : //cd> ∧
pred =<http : //xmlns.com/foaf/0.1/name> ∧

obj = "Carlos"@pt

(Quads)

The remaining pattern that requires querying base relations is GRAPH:

Definition 5 (Translation of GRAPH pattern). Consider the graph pattern
(GRAPH term P1) and let G′ be a new attribute name.

– If term is an IRI then [(GRAPH term P1)]
G
R is

[()]GR on Πvar(P1)

[
ΠG′

(
ρG′←gid (σterm=IRI(Graphs))

)
on [P1]

G′

R

]
– If term is a variable v then [(GRAPH term P1)]

G
R is

[()]GR on Π{v}∪var(P1)

[
ρG′←gid,v←IRI

(
σgid>0(Graphs)

)
on [P1]

G′

R

]
Notice that the relational algebra query resulting from the translation of the

pattern graph P1 renames and hides the graph attribute. The join of the empty
pattern is included in order to guarantee that each query returns the graph
identifier in the first “column”.

Definition 6 (Translation of the UNION pattern). Consider the graph pat-
tern (P1 UNION P2). The relation algebra expression [(P1 UNION P2)]

G
R is:

ΠG,var(P1)∪{v←unb|v∈var(P2)\var(P1)}

(
[P1]

G
R

)⋃
ΠG,var(P2)∪{v←unb|v∈var(P1)\var(P2)}

(
[P2]

G
R

)

9

The union operator requires the use of an extended projection in order to
make unbound variables which are present in one pattern but not in the other.
The ordering of the variables in the projection must respect the total order
imposed in the variables. This guarantees that the attributes are the same and
by the same order in the resulting argument expressions of the union operator.

Definition 7 (Translation of the AND pattern). Consider the graph pattern
(P1 AND P2) and let var(P1) ∩ var(P2) = {v1, . . . , vn} (which may be empty).
The relational algebra expression [(P1 AND P2)]

G
R is

ΠG,
var(P1)− var(P2),
var(P2)− var(P1),
v1 ← first(v′

1, v
′′
1), . . . ,

vn ← first(v′
n, v

′′
n)

σcomp
ρ v′

1 ← v1
...

v′
n ← vn

(
[P1]

G
R

)
on ρ v′′

1 ← v1
...

v′′
n ← vn

(
[P2]

G
R

)

where comp is a conjunction of conditions v′i = unb ∨ v′′i = unb ∨ v′i = v′′i for
each variable vi(1 ≤ i ≤ n). The function first returns the first argument which
is not unb, or unb if both arguments are unb. Note that if the set of common
variables is empty then the relational algebra expression simplifies to:

ΠG,var(P1)∪var(P2)

[
[P1]

G
R on [P2]

G
R

]
We need to rename common variables in both arguments, since an unbound

variable is compatible with any bound or unbound value in order to be able to
check compatibility using a selection (it is well-known that the semantics of unb
is different from semantics of NULLs in relational algebra). The use of the first
function in the extended projection is used to obtain in the solution the bound
value of the variable, whenever it exists. This technique is the same with that
used in [6, 11]. The use of the extended projection is not essential, since it can
be translated into a more complex relational algebra query by using an auxiliary
relation containing a tuple for each pair of compatible pairs of variables.

Definition 8 (Translation of the MINUS pattern). Consider the graph pat-
tern (P1 MINUS P2) and let var(P1) ∩ var(P2) = {v1, . . . , vn} (which may be
empty). The relational algebra expression [(P1 MINUS P2)]

G
R is

[P1]
G
R on

δ
(
[P1]

G
R

)
−ΠG,var(P1)

σcomp∧¬disj
[P1]

G
R on ρ v′

1 ← v1
...

v′
n ← vn

(
[P2]

G
R

)

where comp is a conjunction of conditions vi = unb∨ v′i = unb∨ vi = v′i for each
variable vi(1 ≤ i ≤ n), and disj is the conjunction of conditions vi = unb∨ v′i =
unb for each variable vi(1 ≤ i ≤ n). Note that if the set of common variables is
empty then the above expression reduces to [P1]

G
R since disj = true.

10

This is the first of the non-monotonic SPARQL patterns, and deserves some
extra explanation. We need to check dynamically if the domains of variables
are disjoint since we do not know at translation time what are the unbound
variables in the solution mappings, except when trivially the arguments of MINUS
do not share any variable. The expression on the right hand side of the difference
operator returns a tuple corresponding to a solution mapping µ1 of P1 whenever
it is possible to find a solution mapping µ2 of P2 that it is compatible with
µ1 (condition comp) and the mappings do not have disjoint domains (condition
¬disj). By deleting these tuples (solutions) from solutions of P1 we negate the
condition, and capture the semantics of the MINUS operator. The use of the
duplicate elimination δ ensures that only one tuple is obtained for each solution
mapping, in order to guarantee that the cardinality of the result is as what is
specified by SPARQL semantics: each tuple in [P1]

G
R joins with at most one tuple

(itself) resulting from the difference operation.

Definition 9 (Translation of FILTER pattern). Consider the graph pattern
(P FILTER R), and let [NOT] EXISTS(P1), . . . , [NOT] EXISTS(Pm) the EXISTS or
NOT EXISTS filter expressions occurring in R (which might not occur). The re-
lational algebra expression [(P FILTER R)]GR is

ΠG,var(P)

[
σfilter

(
[P]GR on E1 on . . . on Em

)]
where filter is a condition obtained from R where each occurrence of EXISTS(Pi)
(resp. NOT EXISTS(Pi)) is substituted by condition exi <> 0 (resp. exi = 0),
where exi is a new attribute name. Expression Ei(1 ≤ i ≤ m) is:

ΠG,var(P),exi←0

δ(P ′)−ΠG,var(P)

σsubst
P ′ on ρ v′

1 ← v1
...

v′
n ← vn

(P ′i)

⋃
ΠG,var(P),exi←1

δ(P ′)−
δ(P ′)−ΠG,var(P)

σsubst
P ′ on ρ v′

1 ← v1
...

v′
n ← vn

(P ′i)

where P ′ = [P]GR, P

′
i = [Pi]

G
R, and subst is the conjunction of conditions vi =

v′i ∨ vi = unb for each variable vi in var(P) ∩ var(Pi) = {v1, . . . , vn}. Note
that if there are no occurrences of EXISTS patterns, then [(P FILTER R)]GR is
σR

(
[P]GR

)
.

The translation of FILTER expressions turns out to be very complex due
to the EXISTS patterns. For each exists expression we need to introduce an

11

auxiliary expression returning a unique tuple for each solution mapping of P ,
the top expression when the pattern Pi does not return any solution, and the
bottom expression when it does. We need the double negation in order to not
affect the cardinality of the results of the filter operation when pattern P returns
more than one solution. Obviously, our translation depends on the capability of
expressing arbitrary SPARQL conditions as relational algebra conditions; this is
not immediate but assumed possible due to the translation provided in [6].

We can now conclude our translation by taking care of the OPTIONAL graph
pattern, since it depends on the translation of filter patterns:
Definition 10 (Translation of OPTIONAL pattern). Consider the graph pat-
tern (P1 OPTIONAL (P2 FILTER R)).
The relational algebra expression [(P1 OPTIONAL (P2 FILTER R))]GR is

[(P1 AND P2)]
G
R⋃

ΠG,var(P1)∪{v←unb|v∈var(P2)\var(P1)}[P1]
G
R on

δ
(
[P1]

G
R

)
−

ΠG,var(P1)

(
[(P1 AND P2) FILTER R]GR

)

The translation of (P1 OPTIONAL P2) is obtained from the translation of the graph
pattern (P1 OPTIONAL (P2 FILTER true)).

The translation of the OPTIONAL pattern has two parts, one corresponding
to the JOIN operator (top expression) and one corresponding to the Diff opera-
tor. The translation of the Diff operator uses the same technique as the MINUS
operator but now we remove from solutions of P1 those solution mappings of P1

that are compatible with a mapping of P2 and that satisfy the filter expression.

Theorem 1 (Correctness of translation). Given a graph pattern P and a
RDF dataset D(G) the process of evaluating the query is performed as follows:
1. Construct the base relations Graphs and Quads from D(G);
2. Evaluate [SPARQL(P,D(G), V)]R = ΠV

[
σG′=0

(
[()]G

′

R on [P]G
′

R

)]
with re-

spect to the base relations Graphs and Quads, where G′ is a new attribute
name and V ⊆ var(P).

Moreover, the tuples of relational algebra query (2) are in one-to-one correspon-
dence with the solution mappings of [[P]]D(G) when V = var(P), and where an
attribute mapped to unb represents that the corresponding variable does not be-
long to the domain of the solution mapping.

Proof. The proof is by by structural induction on the graph patterns and can
be found in the extended version of this paper available at http://arxiv.org/
abs/1209.0378.

The constructed translation will be used to extract how-provenance information
for SPARQL queries, addressing the problems identified in [12].

12

5 Provenance for SPARQL queries

The crux of the method has been specified in the previous section, and relies
on the properties of the extended provenance m-semiring Kdprovd for language
RA+

K(−, δ). We just need a definition before we illustrate the approach.

Definition 11 (Provenance for SPARQL). Given a graph pattern P and a
RDF dataset D(G) the provenance for P is obtained as follows:

– Construct the base Kdprovd-relations by annotating each tuple in Graphs and
Quads with a new identifier;

– Construct an annotated query SPARQL(P,D(G), V)Kdprovd
from relational

algebra [SPARQL(P,D(G), V)]R expression by substituting the duplicate
elimination operator by δ1 where 1 is the identity element of Kdprovd.

The provenance information for P is the annotated relation obtained from eval-
uating SPARQL(P,D(G), V)Kdprovd

with respect to the annotated translation of
the dataset D(G).

By the factorization property of Kdprovd we know that this is the most general
m-semiring, and thus the provenance obtained according to Definition 11 is the
most informative one. We just need to illustrate the approach with Example 1
in order to completely justify its appropriateness.

Example 4. First, we represent the RDF dataset by Kdprovd-relations where the
annotation tags are shown in the last column. The IRIs have been abbreviated:

Graphs

gid IRI

0 <> g0

Quads

gid sub pred obj

0 <david> <account> <bank> t1
0 <felix> <account> <games> t2
0 <bank> <accountServiceHomepage> <bank/yourmoney> t3

Returning to query Q = (Q1 OPTIONAL Q2) of Example 2 with (sub)patterns
Q1 = (?w,< account>, ?a) and Q2 = (?a,< accountServiceHomepage>, ?h),
we obtain the following expressions for Q1 and Q2:

[Q1]
G
R = ΠG,w,a

2664ρG← gid
w ← sub
a← obj

(σpred=<account>(Quads))

3775
[Q2]

G
R = ΠG,a,h

2664ρG← gid
a← sub
h← obj

(σpred=<accountServiceHomepage>(Quads))

3775

13

returning the annotated relations:

[Q1]
G
R =

G w a

0 <david> <bank> t1
0 <felix> <games> t2

[Q2]
G
R =

G a h

0 <bank> <bank/yourmoney> t3

The expression [(Q1 AND Q2)]
G
R used in the construction of the expression for

the OPTIONAL pattern is:

ΠG,w,a←first(a′,a′′),h

[
σa′=a′′∨a′=unb∨a′′=unb

(
ρa′′←a

(
[Q1]

G
R

)
on ρa′←a

(
[Q2]

G
R

))]
obtaining the annotated relation:

[(Q1 AND Q2)]
G
R = G w a h

0 <david> <bank> <bank/yourmoney> t1 × t3

We also need to determine the value of δ1([Q1]
G
R) which is simply:

δ1([Q1)]
G
R) =

G w a

0 <david> <bank> 1
0 <felix> <games> 1

We can now construct the expression corresponding to the Diff operator of
SPARQL algebra, namely:

ΠG,w,a,h←unb

2664[Q1]
G
R on

0BB@
δ1
“
[Q1]

G
R

”
−

ΠG,w,a

“
[(Q1 AND Q2)]

G
R

”
1CCA
3775

returning the annotated tuples:

G w a h

0 <david> <bank> unb t1 × (1− (t1 × t3))
0 <felix> <games> unb t2 × (1− 0) = t2

This is the important step, since K-relations assign an annotation to every pos-
sible tuple in the domain. If it is not in the support of the relation, then it is
tagged with 0. Therefore, the solutions for ([(Q1 AND Q2)]

G
R are:

G w a h

0 <david> <bank> <bank/yourmoney> t1 × t3
0 <david> <bank> unb t1 × (1− (t1 × t3))
0 <felix> <games> unb t2

and for our query, finally we get

w a h

<david> <bank> <bank/yourmoney> g0 × t1 × t3
<david> <bank> unb g0 × t1 × (1− (t1 × t3))
<felix> <games> unb g0 × t2

14

The interpretation of the results is the expected and intuitive one. Suppose that
(i) we use the boolean m-semiring, with just the two values t and f, meaning
that we trust or not trust a triple, (ii) product corresponds to conjunction, (iii)
sum corresponds to disjunction, and (iv) difference is defined as x− y = x∧¬y.
So, if we trust g0 and t1, t2 and t3 we are able to conclude that we trust the
first and third solutions (substitute 1 and the identifiers of trusted triples by
t in the annotations, and then evaluate the resulting boolean expression). If
we do not trust t3 but trust the other triples then we trust the second and
third solutions. Also mark how the graph provenance is also annotated in our
solutions. Accordingly, if we don’t trust the default graph then we will not trust
any of the solutions. Therefore, our method was capable of keeping in the same
annotated Kdprovd-relation the several possible alternative solutions, one in each
distinct tuple. This was claimed to not be possible in [12].

6 Discussion and Conclusions

The literature describes several approaches to extract data provenance/annotated
information from RDF(S) data [7, 5, 4, 12, 3]. A first major distinction is that we
extract how-provenance instead of only why-provenance9 of [7, 5, 4, 3]. Both [7, 4]
address the problem of extracting data provenance for RDF(S) entailed triples,
but do not support SPARQL. The theory developed in [5] implements the dif-
ference operator using a negation, but it does not handle duplicate solutions
according to the semantics of SPARQL because of idempotence of sum; addi-
tionally, the proposed difference operator to handle why-provenance discards the
information in the right hand argument. The most complete work is [3] which de-
velops a framework for annotated Semantic Web data, supporting RDFS entail-
ment and providing a query language extending many of the SPARQL features
in order to deal with annotated data, exposing annotations at query level via an-
notation variables, and including aggregates and subqueries (but not property
path patterns). However, the sum operator is idempotent in order to support
RDFS entailment, and by design the UNION operator is not interpreted in the
annotation domain. Moreover, the OPTIONAL graph pattern discards in some sit-
uations the information in the second argument, and thus cannot extract full
provenance information.

The capability of extracting full data how-provenance for SPARQL semantics
as prescribed in [12] has been shown possible with our work, refuting their claim
that existing algebras could not be used for SPARQL. Our approach, like [12],
rests on a translation of SPARQL into annotated relational algebra contrasting
with the abstract approach of [7, 5, 4, 3]. The authors in [12] argue that this
translation process does not affect the output provenance information for the
case of (positive) SPARQL. In this way, the major constructs of SPARQL 1.1
are taken care respecting their bag semantics. However, contrary to the works
of [7, 3] we do not address the RDF schema entailment rules, and therefore our
work is only applicable to simple entailment.
9 We use the terminology “how-” and “why-provenance” in the sense of [9].

15

We plan to address the complete semantics of SPARQL. In particular, ag-
gregates can be handled by summing (⊕) tuples for each group, while property
path patterns can generate annotation corresponding to products (⊗) of the
involved triples in each solution. This extension is enough to be able to cap-
ture data provenance for RDFS entailment. We also want to explore additional
applications in order to assess fully the potential of the proposed method.

References

1. SPARQL 1.1 query language, 2012. W3CWorking Draft 05 January 2012. Available
at http://www.w3.org/TR/2012/WD-sparql11-query-20120105/.

2. K. Amer. Equationally complete classes of commutative monoids with monus.
Algebra Universalis, 18:129–131, 1984.

3. A. P. Antoine Zimmermann, Nuno Lopes and U. Straccia. A general framework for
representing, reasoning and querying with annotated semantic web data. Journal
of Web Semantics, 11:72–95, March 2012.

4. P. Buneman and E. V. Kostylev. Annotation algebras for RDFS. In Proc. of the
2nd Int. Ws. on the role of Semantic Web in Provenance Management (SWPM
2010). CEUR Workshop Proceedings, 2010.

5. R. Dividino, S. Sizov, S. Staab, and B. Schueler. Querying for provenance, trust,
uncertainty and other meta knowledge in RDF. Web Semant., 7(3):204–219, 2009.

6. B. Elliott, E. Cheng, C. Thomas-Ogbuji, and Z. M. Ozsoyoglu. A complete trans-
lation from SPARQL into efficient SQL. In Proc. of the 2009 Int. Database Engi-
neering & Applications Symposium, IDEAS ’09, pages 31–42. ACM, 2009.

7. G. Flouris, I. Fundulaki, P. Pediaditis, Y. Theoharis, and V. Christophides. Col-
oring RDF triples to capture provenance. In Proc. of the 8th Int. Semantic Web
Conf., ISWC ’09, pages 196–212, Berlin, Heidelberg, 2009. Springer-Verlag.

8. F. Geerts and A. Poggi. On database query languages for K-relations. J. Applied
Logic, 8(2):173–185, 2010.

9. T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In Proc. of
PODS’07, pages 31–40, New York, NY, USA, 2007. ACM.

10. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.
ACM Trans. Database Syst., 34(3):16:1–16:45, Sept. 2009.

11. A. Polleres. From SPARQL to rules (and back). In C. L. Williamson, M. E. Zurko,
P. F. Patel-Schneider, and P. J. Shenoy, editors, Proc. of the 16th Int. Conf. on
World Wide Web, WWW 2007, pages 787–796. ACM, 2007.

12. Y. Theoharis, I. Fundulaki, G. Karvounarakis, and V. Christophides. On prove-
nance of queries on semantic web data. IEEE Internet Computing, 15(1):31–39,
2011.

16

