
SRBench: A Streaming RDF/SPARQL Benchmark

Ying Zhang1, Pham Minh Duc1, Oscar Corcho2, and Jean-Paul Calbimonte2

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
{Y.Zhang, P.Minh.Duc}@cwi.nl

2 Universidad Politécnica de Madrid, Spain
ocorcho@fi.upm.es, jp.calbimonte@upm.es

Abstract. We introduce SRBench, a general-purpose benchmark primarily de-
signed for streaming RDF/SPARQL engines, completely based on real-world data
sets from the Linked Open Data cloud. With the increasing problem of too much
streaming data but not enough tools to gain knowledge from them, researchers
have set out for solutions in which Semantic Web technologies are adapted and
extended for publishing, sharing, analysing and understanding streaming data. To
help researchers and users comparing streaming RDF/SPARQL (strRS) engines
in a standardised application scenario, we have designed SRBench, with which
one can assess the abilities of a strRS engine to cope with a broad range of use
cases typically encountered in real-world scenarios. The data sets used in the
benchmark have been carefully chosen, such that they represent a realistic and
relevant usage of streaming data. The benchmark defines a concise, yet compre-
hensive set of queries that cover the major aspects of strRS processing. Finally,
our work is complemented with a functional evaluation on three representative
strRS engines: SPARQLStream, C-SPARQL and CQELS. The presented results
are meant to give a first baseline and illustrate the state-of-the-art.

1 Introduction

Unlike the static data, which are known a priori and rarely change, streaming data ar-
rive as continuous streams typically at high rates, e.g., once per second or even higher.
For data streams, the most recent data are usually most relevant, and the queries mainly
focus on the continuous changes of the observed properties over time. The amount of
streaming data has been growing extremely fast in the past years and is expected to
grow even faster in the coming decades. However, existing Data Stream Management
Systems (DSMSs) are not able to capture all information from the available stream-
ing data, letting alone interlinking those data with other data sets to derive implicit
information [5, 16]. In the meantime, Semantic Web techniques have focused on how
to publish and interlink data on the World Wide Web, and how to perform complex
reasoning tasks on the data. However, these techniques have generally not taken into
account rapidly changing streaming data. The lack of integration and communication
between different streaming data resources often isolates important data streams and
intensifies the existing problem of “too much (streaming) data but not enough (tools to
gain and derive) knowledge” [32]. To tackle this problem, researchers have set out for
solutions in which Semantic Web techniques are adapted and extended for publishing,
sharing, analysing and understanding of streaming data.



Sheth et al. [32] first envisioned a Semantic Sensor Web (SSW), in which sen-
sor data are annotated with semantic metadata to increase interoperability and provide
contextual information essential for situational knowledge3. Subsequently, Corcho et
al. [14] identified the five most relevant challenges of the current SSW. Della Valle et
al. [16] proposed a novel approach, called stream reasoning, to provide the abstractions,
foundations, methods and tools required to integrate data streams, the Semantic Web
and reasoning systems. Sequeda et al. [31] introduced the concept of Linked Stream
Data (LSD) which applies the Linked Data principles to streaming data, so that data
streams can be published as part of the Web of Linked Data. So far, these visions have
been answered by various proposals to address the topic of streaming data process-
ing using Semantic Web technologies from different angles. For instance, how to apply
reasoning on streaming data [1, 16, 32, 35, 36]; how to publish raw streaming data and
connect them to the existing data sets on the Semantic Web [10, 14, 26, 31, 32]; and how
to extend the SPARQL query language to process streaming data [6, 9, 11, 20, 24, 25].
The increasing interest in streaming RDF/SPARQL (strRS) engines calls for a standard
way to compare the functionality and performance of different systems.

So far, little work has been done on benchmarking DSMSs. The Linear Road bench-
mark [3] is the only publicly available DSMSs benchmark. However, it is not ideal when
used to assess strRS engines. As originally designed to evaluate traditional DSMSs, the
benchmark is based on the relational data model, so it does not capture the properties of
RDF graph data. Moreover, Linear Road does not consider interlinking the benchmark
data set with other data sets; neither does it address reasoning. In Semantic Web, ex-
isting RDF/SPARQL benchmarks, e.g., [8, 21, 30], have been focused on static data, so
they do not capture the aforementioned dynamic properties of streaming data. In [24,
25], some microbenchmark queries are used for preliminary evaluations of the proposed
strRS systems. However, the queries were created with a particular system in mind and
they only cover a small subset of the features of SPARQL. Hence, they cannot serve as
general-purpose benchmarks.

In this paper, we present SRBench, a streaming RDF/SPARQL benchmark that aims
at assessing the abilities of strRS engines in dealing with important features from both
DSMSs and Semantic Web research areas combined in one real-world application sce-
nario. That is, how well can a system cope with a broad range of different query types
in which Semantic Web technologies, including querying, interlinking, sharing and rea-
soning, are applied on highly dynamic streaming RDF data. The benchmark can help
both researchers and users to compare strRS engines in a pervasive application sce-
nario in our daily life, i.e., querying and deriving information from weather stations.
To the best of our knowledge, SRBench is the first general-purpose benchmark that is
primarily designed to compare strRS engines.

Given the importance of interlinked data sets in Semantic Web, and the study of
Duan et al. [17], which points out that the synthetic data used by the existing RDF
benchmarks generally do not accurately predict the behaviour of RDF stores in realistic
scenarios, we decided to use a real-world sensor data set, i.e., LinkedSensorData [27],
from the Linked Open Data (LOD) cloud [34] as the basic data set of SRBench. To

3 Situational knowledge is the knowledge specific to a particular situation.



assess a system’s ability of dealing with interlinked data, we additionally use the LOD
data sets GeoNames [18] and DBpedia [15], which are linked to the LinkedSensorData.

SRBench defines a concise, yet comprehensive set of queries which covers the ma-
jor aspects of strRS query processing, ranging from simple graph pattern matching
queries only on streaming data to queries requiring reasoning over multiple interlinked
data sets. Each query is intended to challenge a particular aspect of the query processor.
The main advantages of applying Semantic Web technologies on streaming data include
providing better search facilities by adding semantics to the data, reasoning through on-
tologies, and integration with other data sets. The ability of a strRS engine to process
these distinctive features is accessed by the benchmark with queries that apply reason-
ing not only over the streaming sensor data, but also over the sensor metadata and the
two aforementioned LOD data sets.

Given that existing strRS engines are still in their infancy, we deem it important
to first conduct a functional evaluation. Do they provide a sufficient set of functions
that are required by the streaming applications? Do they miss any crucial functionali-
ties? Do they provide any additional functionalities that can be beneficial for streaming
applications, which thus distinguish themselves from similar systems? Therefore, we
complement our work on SRBench by a functional evaluation on three strRS engines,
SPARQLStream [11], C-SPARQL [6] and CQELS [25]. Each of these systems also
proposes its own SPARQL extension for streaming data processing. The evaluation is
not meant to be an exhaustive examination of all existing strRS systems. The testing
systems are chosen, because they represent different approaches in strRS processing.
SPARQLStream aims at enabling ontology-based access to streaming data. C-SPARQL
attempts to facilitate reasoning upon rapidly changing information. CQELS is the only
native strRS system built from scratch. The evaluation results are intended to give a first
baseline and illustrate the state-of-the-art.

The target audience of this paper can be divided into three groups. First, the frame-
work presented here can help strRS engine implementers to verify and refine their query
processors by comparing them to other implementations. Second, users can be assisted
in choosing between products by using SRBench as a simple case study or pilot project
that yet provides essential ingredients of the targeted system. For researchers, lastly,
we provide a framework for helping to tailor existing technologies for use in streaming
settings and for refinement or design of algorithms.

This paper is further organised as follows. Section 2 discusses design challenges
of the benchmark. Section 3 describes the benchmark data sets. Section 4 defines the
benchmark queries. Section 5 presents the results of the functional evaluation. Finally,
we discuss related work in Section 6 and conclude in Section 7.

2 Design Challenges

In this section, we discuss the unique challenges that streaming RDF/SPARQL process-
ing imposes on the design of a benchmark and how they are met by SRBench.
Proper Benchmark Data set First of all, the design of a streaming RDF/SPARQL
benchmark requires a cautiously chosen data set that is relevant [19], realistic [17],
semantically valid [3] and interlinkable [31]. Additionally, the data set should allow the



formulation of queries that both feel natural and present a concise but complete set of
challenges that strRS engines should meet.

In SRBench, this challenge is met by choosing the LinkedSensorData [27] data set
from the LOD cloud as the basic data set. Among different kinds of streaming data4,
sensor data is a major class of streaming data with the longest history. Weather infor-
mation applications have long become pervasive in our daily life, in addition, they are
gaining increasing social and financial values in more accurate prediction of extreme
weather conditions. The LinkedSensorData is a real-world data set containing the US
weather data published by Kno.e.sis5 according to the LSD principles [13], which ap-
plies the well-established Linked Data principles [7] to streaming data. The Linked-
SensorData is the first and, so far, largest LSD data set in the LOD cloud [34] and
CKAN [12] containing ∼1.7 billion triples.

To assess a system’s ability of dealing with interlinked data, we additionally use
other data sets from the LOD cloud. Currently, this includes the GeoNames [18] and
DBpedia [15] data sets. Our choice for the GeoNames data set is determined by the
fact that the LinkedSensorData data set links the sensor locations to nearby geographic
places defined by the GeoNames data set. The choice for the DBpedia data set is a mat-
ter of course, since DBpedia is the largest and most popularly used data set in the LOD
cloud. By using the LOD data sets, it is easy to extend the benchmark with more data
sets in the future. This enables adding more semantics to the benchmark’s application
scenario, which subsequently allows more use cases.

A Concise Set of Features The main advantages of applying Semantic Web technolo-
gies on streaming data include providing better search and sharing facilities by adding
semantics to the data, reasoning through ontologies, and integration with other data sets.
The benchmark should provide a comprehensive set of queries that assess a system’s
ability of processing these distinctive features on highly dynamic (in terms of arriving
rate and amount) streaming data, possibly in combination with static data. The queries
should have different levels of complexity, so that the benchmark can be used to evaluate
not only general purpose systems supporting a broad spectrum of features, but also spe-
cialised systems aiming at providing a limited number of features with high efficiency.
Nonetheless, as stated by the “20 queries” principles [23], the number of queries should
be compact. Thus, the number and types of queries should exhibit a good balance be-
tween conciseness and detail making it possible to run the benchmark in an acceptable
time, while still acquiring interesting characteristics of the system(s) tested.

In SRBench, this challenge is met by a set of seventeen queries that have been care-
fully chosen such that they provide valuable insights that can be generally applied to
strRS systems and are useful in many domains, e.g., notion of time bounded queries
(e.g., data in the latest X units-of-time); notion of continuous queries (i.e., queries
evaluated periodically); data summarisation in the queries (e.g., aggregates); provid-
ing high-level information from raw-data (e.g., ask for hurricanes, while the raw-data
are simply temperature, wind measurements); and combining streams with contextual
static data. Before designing the queries, we first identified the set of important features
in the SPARQL 1.1 language [22] and streaming data processing. Then, use cases are

4 Next to sensor data streams, there are text streams and video streams.
5 http://knoesis.wright.edu



LinkedSensorData

GeoNames

Feature

DBpedia

Airport

LinkedSensorMetadata

System Point

LocatedNearReal

LinkedObservationData

Observation

Instant

ResultData

MeasureData TruthData

owl:sameAs

om-owl:processLocation

om-owl:hasLocatedNearRel

om-owl:result
om-owl:procedure

om-owl:samplingTime
om-owl:hasLocation

Fig. 1. An overview of the data sets used in SRBench and their relationships.

carefully chosen such that they reflect how the weather information is used in the real
world, while each of them challenges the query processor, with focus on one or two of
the important features (but not limited to).

No Standard Query Language A standard query language for streaming data pro-
cessing has never come into existence. Therefore, the queries of a streaming benchmark
should be specified in a language agnostic way, yet have a clear semantics.

In SRBench, this challenge is met by first giving a descriptive definition of the
benchmark queries, in a similar way as how the Berlin SPARQL Benchmark describes
its queries6. Then, we provide implementations of the benchmark queries using the
three major SPARQL extensions for streaming data processing (for short: streaming
SPARQL), i.e., SPARQLStream, C-SPARQL and CQELS. Thus, these three sets of im-
plementing queries are not only used by the functional evaluation in Section 5, but also
for the purpose of clarifying the benchmark query definitions.

3 Data sets

In this section, we briefly describe the three LOD data sets used by SRBench. An
overview of the data sets and their ontologies, and how they are linked to each other
is shown in Figure 1. More information of the data sets can be found in [37].

The LinkedSensorData Data Set Work on producing Linked Data from data emitted
by sensors was initiated in 2009, pioneered by [31, 26]. The LinkedSensorData con-
tains the US weather data collected since 2002 by MesoWest7, and were transformed
into LSD by Kno.e.sis. LinkedSensorData contains two sub-datasets. The LinkedSen-
sorMetadata contains expressive descriptions of ∼20,000 weather stations in the US.
On average, there are five sensors per weather station, so there are in total ∼100,000
sensors in the data set. The sensors measure phenomena such as temperature, visibil-
ity, precipitation, pressure, wind speed and humidity. In addition to location attributes,
e.g., latitude, longitude, and elevation, there are also links to locations in GeoNames
that are near the weather stations. The LinkedObservationData contains expressive de-
scriptions of hurricane and blizzard observations in the US. The observations collected
include values of all phenomena measured by the sensors. The data set includes ob-
servations within the entire US during the time periods that several major storms were

6 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
7 http://mesowest.utah.edu/



Name Storm Type Date #Triples #Observations Data size
ALL 1,730,284,735 159,460,500 ∼111 GB
Bill Hurricane Aug. 17 – 22, 2009 231,021,108 21,272,790 ∼15 GB
Ike Hurricane Sep. 01 – 13, 2008 374,094,660 34,430,964 ∼34 GB
Gustav Hurricane Aug. 25 – 31, 2008 258,378,511 23,792,818 ∼17 GB
Bertha Hurricane Jul. 06 – 17, 2008 278,235,734 25,762,568 ∼13 GB
Wilma Hurricane Oct. 17 – 23, 2005 171,854,686 15,797,852 ∼10 GB
Katrina Hurricane Aug. 23 – 30, 2005 203,386,049 18,832,041 ∼12 GB
Charley Hurricane Aug. 09 – 15, 2004 101,956,760 9,333,676 ∼7 GB

Blizzard Apr. 01 – 06, 2003 111,357,227 10,237,791 ∼2 GB
Table 1. Statistics of the LinkedObservationData data sets used by SRBench

active, including Hurricane Katrina, Ike, Bill, Bertha, Wilma, Charley, Gustav, and a
major blizzard in Nevada in 2003. These observations are generated by weather sta-
tions described in the LinkedSensorMetadata data set introduced above. Currently, this
data set contains almost two billion RDF triples, which together describe more than
159 million observations. For SRBench, we have obtained all linked sensor observation
data sets from the original Kno.e.sis site for LinkedSensorData [27]. Table 1 shows the
statistics of the LinkedObservationData data sets as presented on the original website,
to which we have added the sizes of the data sets after they have been unpacked.

All data are described according to the sensor-observation ontology [27]. The on-
tology class System describes a weather sensor station, e.g., its ID and location of the
station, a geographical location to which the station is located nearby and the weather
properties observed by this station. The class Observation describes an observation
made by a weather sensor station, e.g., the ID of the weather station that has made
the observation, the type of the observed weather property and the value and time of
the observation. The class MeasureData describes the numerical value of an observa-
tion, while the class TruthData describes the truth-value of an observation. The class
LocatedNearRel describes a geographic location to which a weather sensor station is
located nearby, e.g., the distance between the nearby location and the sensor station.
The class Point describes a geographic point location, in terms of latitude, longitude
and altitude. The class Instant describes a date/time object.

The GeoNames Data Set is a free geographical database that covers all countries and
contains >8 million place names [18]. For SRBench, we use version 3.01 of the GeoN-
ames ontology [18]. Its main class is Feature, which describes a geographical location,
e.g., its names, its latitude and longitude, the country to which this location belong and
other locations that are close to this location. We have obtained the dump of the com-
plete GeoNames RDF data set, which contains ∼8 million geographic features with ∼46
million RDF triples. The dump has one RDF document per toponym. The complete data
set occupies ∼10GB on disk.

The DBpedia Data Set The DBpedia ontology is highly complex but well documented,
so we do not repeat its class definitions here, but refer the interested readers to its
official website [15] instead. For SRBench, we have obtained the data sets from the
English language collection, which consists of 44 RDF files in N-triple format with
∼181 million triples. The total data size is ∼27 Gigabytes. The DBpedia data set is
directly linked to the GeoNames data set through the owl:sameAs property. DBpedia
has in total 85,000 links to the GeoNames data set.



Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

1 graph pattern matching A A,F,O A A,F A A,F,U A A A A A,F A,F,U A,F A,F,U A,F A,F A,F

2 solution modifier P,D P,D P P P P P,D P P P,D P,D P P P,D P P P

3 query form S S A S C S S S S S S S S S S S S

4 SPARQL 1.1 F,P A A,E,M,F A,S N A,E,M A,E,M A,S,M,F A,S,E,M,F,P A,E,M,F,P F,P A,E,M,P P P

5 reasoning R C A C

6 streaming feature T T T T T T T, T T T T T T T T

7 data access O O O O O O O O, S O,S O,S O,S O,S,F O,S,G O,S,G O,S,D O,S,G,D S

Table 2. Addressed features per query. Operators are abbreviated in per row unique capital letters,
defined as: 1. And, Filter, Union, Optional; 2. Projection, Distinct; 3. Select, Construct, Ask;
4. Aggregate, Subquery, Negation, Expr in SELECT, assignMent, Functions&operators, Property
path; 5. subClassOf, subpRopertyOf, owl:sameAs; 6. Time-based window, Istream, Dstream,
Rstream; 7. LinkedObservationData, LinkedSensorMetadata, GeoNames, Dbpedia.

4 Benchmark Queries

In this section, we define the SRBench benchmark queries. An overview of the language
features addressed by each query is given in Table 2.

A SPARQL query can be divided into three parts. As SPARQL is essentially a
graph-matching query language, graph pattern matching is the fundamental and one
of the most complex parts of a SPARQL query. This part includes features such as the
basic graph pattern matching operators ‘.’ (representing a natural join AND) and FILTER,
and the most complicated operators UNION and OPTIONAL [28]. All graph pattern match-
ing operators are addressed in the SRBench queries.

The second part is called the solution modifiers, which are used to modify the re-
sults of the graph pattern matching operators. The solution modifiers contain six opera-
tors, i.e., projection, DISTINCT, ORDER BY, OFFSET, LIMIT and REDUCED. In the SRBench
queries, only the projection and DISTINCT solution modifiers are addressed, because the
additional values of the other four operators are negligible in streaming applications.
ORDER BY is ignored since streaming data are already sorted by their time stamps, and
sorting the results on another attribute will only produce partially sorted data (within
one window). The features of OFFSET and LIMIT are largely covered by sliding windows,
which are more appropriate for strRS queries. Finally, the nondeterministic property of
REDUCED highly complicates the verification of the query results.

The last part is called the query forms, which determine the form of the final output
of a SPARQL query. The output can be one of the four query forms: SELECT returns the
projected variables bound in a query pattern match; CONSTRUCT returns a new RDF graph
constructed by substituting variables in a set of triple templates; ASK returns a boolean
indicating whether a query pattern matches or not; and DESCRIBE returns an RDF graph
that describes the resources found. In the SRBench queries, the DESCRIBE form is not
used, because the result of a DESCRIBE query is highly implementation dependant, which
largely complicates the verification of the query results. Moreover, the functionality of
DESCRIBE can be approximated using explicit graph pattern matching and projections.
The first three rows of Table 2 respectively survey how the operators of the three parts
are distributed among the benchmark queries.

Next to the features defined by SPARQL 1.0 [29], SPARQL 1.1 has introduced sev-
eral new features, including aggregates, subqueries, negation, expressions in the SELECT



clause, Property Paths, assignment, a short form for CONSTRUCT, and an expanded set of
functions and operators. Except the short form of CONSTRUCT, which is merely a syn-
tax sugar, we make extensive use of these new features in the benchmark queries, es-
pecially the Property Paths expressions, which we regard as a major contribution of
SPARQL 1.1 that provides great flexibility to navigate through the RDF graphs. Note
that, since SPARQL 1.1 is still a W3C working draft, changes to the syntax and/or se-
mantics of the new language features are possible. For instance, the semantics of the
Property Path expressions might be modified, due to recent analysis of the unfeasibil-
ity of their current semantics [4]. Possible changes in SPARQL 1.1 will not affect the
definition of the benchmark queries, since they are specified independent of any query
language. Row 4 of Table 2 surveys how the SPARQL 1.1 new features are distributed
among the benchmark queries.

A main added value of applying Semantic Web technologies on streaming data is the
possibility of reasoning over the data, so SRBench includes queries that allow exploit-
ing such facility if provided by the processing engine. Currently, the queries involve
reasoning over the rdfs:subClassOf, rdfs:subPropertyOf and owl:sameAs properties.
Note that, these queries can be implemented and executed by both systems with and
without inference mechanisms, but the differences might be noticeable in the query
results. That is, systems with inference mechanisms will most probably return more re-
sults than systems without such mechanisms. Also note that, although SPARQL is not a
reasoning language, it can be used to query ontologies if they are encoded in RDF. So,
on systems without reasoning, this shortcoming can be alleviated by explicitly express-
ing reasoning tasks using extra graph patterns with Property Path over the ontologies.
In our functional evaluation (Section 5), we actually use this workaround to implement
the benchmark queries using the three language extensions tested. Row 5 of Table 2
surveys how reasoning features are distributed among the benchmark queries.

Although there is no standard query language for streaming RDF data, existing
streaming SPARQL extensions generally introduce streaming data operators that are
inspired by the continuous query language CQL [2]. So, next to the classical SPARQL
1.0 and 1.1 operators, we add three important streaming SPARQL features. The time-
based sliding window operator is a basic operator in streaming data processing, which
allows users to control data access using time intervals. A slide size can be defined to
create overlapping or disjoint windows. The window-to-stream operators, Istream and
Dstream, return data items that have been inserted or deleted since the previous window,
respectively. Although not frequently used, these operators help to detect changes in
the data streams, a feature particularly important for streaming data. Row 6 of Table 2
surveys how the streaming operators are distributed among the benchmark queries.

To conclude, the SRBench queries are designed based on a real use case in LSD.
They cover the most important SPARQL operators and the common streaming SPARQL
extensions. SRBench clearly shows the added values of the Semantic Web technologies
on gaining and even deriving knowledge from streaming data. The benchmark provides
a general framework to assess the ability of streaming RDF/SPARQL engines to sup-
port such applications. In the reminder of this section, the queries are grouped under
section headings which indicate the features to be tested. Due to lack of space, we omit
presenting the query implementations, which are available at [33].



4.1 Basic Pattern Matching
Q1. Get the rainfall observed once in an hour.

This is a basic but important query. It tests an engines ability to handle basic graph
patterns, disjoint time windows (“once in an hour”) to gain knowledge about the mostly
spoken topic (“rainfall”), when talking about the weather.
4.2 Optional Pattern Matching
Q2. Get all precipitation observed once in an hour.

Although similar to Q1, this query is much more complex, because it requires re-
turning all types of precipitation. Since the triple patterns for different kinds of precipita-
tions maybe different, OPTIONAL patterns are needed to capture the possible differences.
Additionally, this query exploits an engine’s ability of reasoning over all instances of
the class PrecipitationObservation and its subclasses.
4.3 ASK Query Form
Q3. Detect if a hurricane is being observed.

A hurricane has a sustained wind (for >3 hours) of at least 74 miles per hour. This
query continuously monitors if the weather conditions observed in the current time
window (i.e., an hour) is extreme (“a hurricane”). It also tests the engines ability to
filter out the minimal amount of the streaming data to quickly compute the answer.
4.4 Overlapping Sliding Window and Historical Data
Q4. Get the average wind speed at the stations where the air temperature is >32 degrees
in the last hour, every 10 minutes.

Combine values observed for multiple weather properties. This query tests the en-
gines ability to deal with historical data that need to be (temporarily) stored. Moreover,
contrary to queries for which an incoming data item can be immediately consumed and
then discarded, this query tests how efficient an engine’s strategy is to decide how to
store historical data and for how long.
4.5 CONSTRUCT Derived Knowledge
Q5. Detect if a station is observing a blizzard.

A blizzard is a severe snow storm characterised by low temperatures, strong winds
and heavy snow lasting for at least three hours. This query detects extreme weather con-
ditions by combining multiple observed weather properties. It tests the engines ability
to produce new knowledge derived by combining existing data.
4.6 Union
Q6. Get the stations that have observed extremely low visibility in the last hour.

Next to direct measurements of low visibility (<10 centimetres), heavy snowfall and
rainfall (> 30 centimetres) also cause low visibility. This is a more complex example
of detecting extreme weather conditions, which requires not only gaining knowledge
explicitly contained in the data (i.e., visibility), but also deriving implicit knowledge
from data sources (i.e., snowfall and rainfall).
4.7 Window-to-Stream operation
Q7. Detect stations that are recently broken.

If a station suddenly stops producing (observation) data, it might be broken. Know-
ing the stability of the stations is an important issue, which can be deduced from absent



data. This query tests the engines ability to cope with the dynamic properties that are
specific for streaming data.

4.8 Aggregates
Q8. Get the daily minimal and maximal air temperature observed by the sensor at a
given location.

Temperature is the most common weather condition queried. This query tests the
engines’ ability to aggregate data grouped by their geo-spatial properties.

4.9 Expression in SELECT Clause
Q9. Get the daily average wind force and direction observed by the sensor at a given
location.

Wind is the other most commonly queried weather condition. The Beaufort Wind
Force Scale8 is an international standard to express how strong the wind is. It attaches
some semantics to the bare wind speed numbers. Since this query requires wind speeds
to be converted into Beaufort scales, it tests the engines ability to post process the
qualified triple patterns.

4.10 Join with Static Data
Q10. Get the locations where a heavy snowfall has been observed in the last day.

This query finds places that are suitable for a ski holiday. It also tests the engines
ability to join the dynamic sensor streaming data with the static sensor metadata.

4.11 Subquery
Q11. Detecting if a station is producing significantly different observation values than
its neighbouring stations.

Detecting malfunctioning sensors is an important issue in all sensor systems. If two
sensor stations are located close (denoted by hasLocatedNearRel) to the same location,
the sensors are neighbours of each other and they should observe similar weather condi-
tions, otherwise, a sensor might be malfunctioning. This query tests the engines ability
to compute complex subqueries.

4.12 Property Path Expressions
This group of queries tests the engines ability to derive knowledge from multiple

interlinked data sets using Property Path expressions. In particular, the queries require
computing paths with arbitrary lengths for the parentFeature relationship, and com-
puting alternatives for the name of the resulting places.

Q12. Get the hourly average air temperature and humidity of large cities.
To analyse air pollution in large cities, one might want to know if the temperature

is higher during the rush hours in such cities. This query requires using the GeoNames
data set to find large cities, i.e., population > 15000, and use the hasLocatedNearRel
property in the sensor ontology [27] to find sensors located in or near to these cities.

Q13. Get the shores in Florida, US where a strong wind, i.e., the wind force is between
6 and 9, has been observed in the last hour.

This query finds shores in Florida, US, where one can go windsurfing now. It re-
quires first reasoning over the parentADM{1,2,3,4} and parentFeature properties of the

8 http://en.wikipedia.org/wiki/Beaufort_scale



Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17
SPARQLStream X PP A G G X X G G,IF SD SD PP,SD PP,SD PP,SD PP,SD PP,SD PP,SD
CQELS X PP A X X X D/N X IF X X PP PP PP PP PP PP
C-SPARQL X PP A X X X D X IF X X PP PP PP PP PP PP

Table 3. Results of the functional evaluation. The ticks indicate queries supported by an engine.
Uppercase letters are abbreviations of features required by a query that are not supported by a
particular system. The abbreviations are defined as the following: Ask; Dstream; Group by and
aggregations; IF expression; Negation; Property Path; and Static Dataset. The ‘/’ symbol means
‘or’, i.e., the query would work if one of the listed features is available. The ‘,’ symbol means
‘and’, i.e., all listed features are needed by the query.

GeoNames ontology to find the shores in Florida, US; and then using the hasLocatedNearRel
property in the sensor ontology to find sensors located near to these shores.
Q14. Get the airport(s) located in the same city as the sensor that has observed ex-
tremely low visibility in the last hour.

This query triggers an alarm if a dangerous weather condition has been observed.
It requires using the GeoNames data set and the hasLocatedNearRel property in the
sensor ontology to find airport(s) and sensors located in the same city.
4.13 Ontology-based Reasoning

This group of queries exploit the engines ability to apply reasoning, using the prop-
erties rdfs:subClassOf and owl:sameAs, over the ontologies of the interlinked data
sets.
Q15. Get the locations where the wind speed in the last hour is higher than a known
hurricane.

By comparing an observed value with historical values, we can detect extreme
weather conditions. This query requires reasoning over rdfs:subClassOf to find all
known hurricanes in the system.
Q16. Get the heritage sites that are threatened by a hurricane.

We want to trigger an alarm if a dangerous weather condition has been observed.
This query requires using a Property Path expression with an arbitrary length path to
find all heritages sites in the DBpedia data set; then reasoning using owl:sameAs to link
a heritage to a geographical instance described by the GeoNames data; and finally using
the GeoNames data set and the hasLocatedNearRel property in the sensor ontology to
find sensors located close to the monuments.

Q17. Estimate the damage where a hurricane has been observed.
A first thing we want to know after a natural disaster is the damage it brings. This

can be estimated by consulting the damage brought by similar disasters that have hap-
pened before in the same/nearby area. This query requires using the DBpedia data set
to find the damages caused by earlier hurricanes in the same/nearby area as the sensor
that has observed a hurricane.

5 Implementation and Evaluation

As streaming RDF/SPARQL processing is a new topic with less than a decade of his-
tory, the proposed systems are mostly in a beginning stage of development. During



this phase, one of the most important issues is to assess the effectiveness of the pro-
posed systems. We have complemented our work on SRBench with a functional eval-
uation on three leading strRS systems, i.e., SPARQLStream [11], CQELS [25] and
C-SPARQL [6], that address strRS processing from different angles. In the evaluation,
we seek answers to the following questions: Do they provide an adequate set of func-
tionalities that are needed by the streaming applications? Do they sufficiently reveal the
additional value of RDF/SPARQL for streaming data processing? Furthermore, do they
provide any additional interesting functionalities, which help the users to distinguish
one system from the others? The results presented in this section are meant to give a
first insight into the state-of-the-art of the strRS engines and highlight several pros and
cons of different approaches.

All three systems come with a streaming SPARQL language proposal and a query
processing engine. The queries are implemented according to the syntax specified in [11],
[25] and [6] for SPARQLStream, CQELS and and C-SPARQL, respectively. To exe-
cute the queries, we downloaded the latest SPARQLStream

9, CQELS (Aug. 2011)10

and C-SPARQL 0.7.411. All implementing queries can be found in the SRBench wiki
page [33]. An overview of the evaluation results is shown in Table 3. A tick indicates
that the engine is able to process a particular query. For each query that cannot be pro-
cessed by a certain engine, we denote the main missing feature(s) that cause the query
to fail. The abbreviations are defined in the table caption.

The results of the evaluation are fairly close to our expectation. In general, all three
engines support basic SPARQL features (i.e., the graph pattern matching features, so-
lution modifiers and the SELECT and CONSTRUCT query forms discussed in Section 4)
over time-based windows of streaming data. The main issue we have identified from
the evaluation is that all three engines’ abilities of dealing with the new features in-
troduced by SPARQL 1.1 are rather limited. So, for instance, seven out of seventeen
queries cannot be executed, because the Property Path expressions are not supported
by any of the tested engines. We regard the Property Path expressions as one of the
most important features of SPARQL 1.1, because it provides flexible ways to navigate
through RDF graphs and facilitates reasoning over various graph patterns. This feature
does not exist in other query languages, e.g., SQL and XQuery, that are not primarily
designed to query graph data. The lacking of support for the SPARQL 1.1 features is
most probably due to the freshness of the SPARQL 1.1 language. However, we would
like to emphasise that the advanced SPARQL 1.1 features are the distinguishing factors
of the usefulness of one system from others for streaming RDF applications.

Several more remarks can be made from Table 3. The lack of support for the ASK
query form needed by Q3 is unexpected, since it is an easy to implement feature. This
might be caused by that it does not have research values, but in real-world scenario’s,
such as the one used by SRBench, the users often start with asking for basic information
that can be just as simple as “is it raining?”. Q3 can also be implemented using the IF
function of SPARQL 1.1, but it is available on none of the tested engines.

9 http://code.google.com/p/semanticstreams/source/checkout
10 http://code.google.com/p/cqels/
11 http://streamreasoning.org/download



Q7 can be most easily implemented using the window-to-stream operator DSTREAM,
which can detect data items that have been deleted since the previous window, which
is exactly what this query asks. Although all three systems provide ways to produce
new data streams from the results of a continuous query, SPARQLStream is the only
streaming SPARQL extension that support DSTREAM. Q7 can also be implemented by
querying the same stream twice with different window definition and then using the
NOT EXISTS expression of SPARQL 1.1 to test the absence of a graph pattern from
the previous time interval in the current time interval. Since CQELS allows defining
different time windows for the same stream, this query can be expressed in the CQELS
language, but query execution failed because the CQELS engine does not support NOT
EXISTS yet. C-SPARQL does not allow query the same stream more than once, and
SPARQL 1.1 does not define arithmetic functions over the date/time data type, it is not
possible to express the query in C-SPARQL.

The number of functionalities currently supported by SPARQLStream is somewhat
less than those supported by CQELS and C-SPARQL. As the GROUP BY and aggrega-
tions functions are still work in progress in SPARQLStream, it causes four more queries
(i.e., Q4, Q5, Q8 and Q9) to fail. Moreover, the development of the SPARQLStream en-
gine has so far concentrated on supporting streaming data, but not both streaming and
static data. This is one of the main reasons that the queries Q10 – 17 cannot be run on
SPARQLStream. Enabling queries on both streaming and static data sets is an ongoing
subproject of PlanetData12.

Little work has been done on enabling reasoning over streaming data. C-SPARQL
is the only testing system that supports reasoning based on simple RDF entailment.
SPARQLStream and CQELS currently do not tackle the problem of reasoning, because
SPARQLStream targets at enabling ontology based access to streaming data, while
CQELS concentrates on building a strRS engine from scratch. So, next to the Prop-
erty Path expressions, the ability to apply reasoning is another distinguishing factor.

The overall conclusion of our evaluation is that there is no single best system yet,
even thought the SPARQLStream engine supports fewer queries than CQELS and C-
SPARQL. Both the SPARQL 1.1 language and the streaming RDF/SPARQL engines
have been introduced only recently. As the time passes, we expect the strRS engines to
gradually provide a richer set of functionalities.

Although this work focuses on a functional evaluation, we propose a number of met-
rics that should be used for a performance evaluation using SRBench. Correctness: the
query results must be validated, taking into account possible variations in ordering, and
possibly multiple valid results per query. The validation results should be expressed in
terms of precision and recall. Throughput: the maximal number of incoming data items
a strRS engine is able to process per time unit. Scalability: how does the system re-
acts to increasing number of incoming streams and continuous queries to be processed.
Response time: the minimal elapsed time between a data item entering the system and
being returned as output of a query. Note that response time is mainly relevant for
queries allowing immediate query results upon receiving of a data item.

12 http://planet-data-wiki.sti2.at/



6 Related Work

The Linear Road Benchmark [3] is the only publicly available benchmark developed
for evaluating traditional data stream engines. The benchmark simulates a traffic man-
agement scenario where multiple cars are moving on multiple lanes and on multiple
different roads. The system to be tested is responsible to monitor the position of each
car, and continuously calculates and reports to each car the tolls it needs to pay and
whether there is an accident that might affect it. In addition, the system needs to contin-
uously maintain historical data, as it is accumulated, and report to each car the account
balance and the daily expenditure. Linear Road is a highly challenging and complicated
benchmark due to the complexity of the many requirements. It stresses the system and
tests various aspects of its functionality, e.g., window-based queries, aggregations, var-
ious kinds of complex join queries; theta joins, self-joins, etc. It also requires the ability
to evaluate not only continuous queries on the stream data, but also historical queries
on past data. The system should be able to store and later query intermediate results.
All these features are also addressed in SRBench. Additionally, SRBench includes Se-
mantic Web specified features, such as inter liked heterogeneous data sets, exploration
of RDF graphs and reasoning.

With the growth and availability of many systems supporting RDF/SPARQL, in-
creasing efforts have been made in developing benchmarks for evaluating the per-
formance of RDF stores. The most representative and widely used RDF benchmarks
are the Lehigh University Benchmark (LUBM) [21], the Berlin SPARQL Benchmark
(BSBM) [8], and the SPARQL Performance Benchmark (SP2Bench) [30]. LUBM, one
of the first RDF benchmarks, is built over a university domain in order to mainly eval-
uate the reasoning capability and inference mechanism of OWL (Web Ontology Lan-
guage) Knowledge Base Systems. SP2 Bench uses DBLP 13 as its domain and generates
the synthetic data set mimicking the original DBLP data. Currently, BSBM is proba-
bly the most popular RDF/SPARQL benchmark that is built around an e-commerce use
case where products are offered by various vendors and get the reviews from various
customers in different review sites. However, these benchmarks are mostly relational-
like, lack heterogeneity or are limited in representing realistic skewed data distributions
and correlations. No new features of SPARQL 1.1, such as property path expression
have been addressed in these benchmarks. Besides, although one advantage of RDF is
the flexibility in sharing and integrating linked open knowledge bases, existing bench-
marks solely work with one generated data set without exploiting the knowledge from
other linked open data such as DBpedia [17]. Finally, none of the existing benchmarks
provides reasoning tasks, a distinguish feature of Semantic Web technology. SRBench
has advanced the state-of-the-art of RDF benchmarks by addressing all these features
that are hitherto absent.

7 Conclusion

We have introduced SRBench, the first general purpose streaming RDF/SPARQL bench-
mark, that has been primarily designed to assess the abilities of streaming RDF/SPARQL

13 http://www.informatik.uni-trier.de/ley/db/



processing engines in applying Semantic Web technologies on streaming data. The
benchmark has been designed based on an extensive study of the state-of-the-art tech-
niques in both the data stream management systems and the strRS processing engines.
This ensures that we capture all important aspects of strRS processing in the benchmark.

Motivated by the study of [17], we have carefully chosen three real-world data sets
from the LOD cloud to be used in the benchmark. The benchmark contains a concise,
yet comprehensive set of queries which covers the major aspects of streaming SPARQL
query processing, ranging from simple graph pattern matching queries to queries with
complex reasoning tasks. The main advantages of applying Semantic Web technologies
on streaming data include providing better search facilities by adding semantics to the
data, reasoning through ontologies, and integration with other data sets. The ability
of a strRS engine to process these distinctive features is accessed by the benchmark
with queries that apply reasoning not only over the streaming sensor data, but also
over the metadata and even other data sets in the LOD cloud. We have complemented
our work on SRBench with a functional evaluation of the benchmark on three currently
leading streaming RDF/SPARQL engines. The evaluation shows that the functionalities
provided by the tested engines are generally limited to basic RDF/SPARQL features
over streaming data. There is no single best system yet. We believe that a streaming
RDF/SPARQL engine can significantly differentiate itself from other strRS engines by
providing more advanced SPARQL 1.1 features and reasoning over both streaming and
static data sets.

The natural next step is to run performance and scalability evaluations on the three
example strRS engines and probably even other engines. This is a ongoing work. A
practical challenge in doing performance evaluation is the verification of query results,
given the dynamicity of streaming data and the diversity of the implementing engines.

Acknowledgements. This works was supported by grants from the European Union’s
7th Framework Programme (2007-2013) provided for the projects PlanetData (GA no.
257641) and LOD2 (GA no. 257943). We would like to give special thanks to Phuoc-
Danh Le for his help on using CQELS.

References

1. D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified language for
event processing and stream reasoning. In WWW ’11, pages 635–644, 2011.

2. A. Arasu, S. Babu, and J. Widom. CQL: A Language for Continuous Queries over Streams
and Relations. In DBPL2003, pages 1–19, 2003.

3. A. Arasu et al. Linear Road: A Stream Data Management Benchmark. In Proc. Of the 30th
VLDB Conference, pages 480–491, Toronto, Canada, 2004.

4. M. Arenas, S. Conca, and J. Perez. Counting Beyond a Yottabyte, or how SPARQL 1.1
Property Paths will Prevent Adoption of the Standard. In WWW, 2012.

5. M. Balazinska et al. Data Management in the Worldwide Sensor Web. IEEE Pervasive
Computing, 6(2):30–40, 2007.

6. D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. Querying RDF
Streams with C-SPARQL. SIGMOD Record, 39(1):20–26, Mar. 2010.

7. T. Berners-Lee. Linked Data - Design Issues. http://www.w3.org/DesignIssues/
LinkedData.html, 2009.



8. C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. Int. J. Semantic Web Inf. Syst,
5(2):1–24, 2009.

9. A. Bolles, M. Grawunder, and J. Jacobi. Streaming SPARQL - extending SPARQL to process
data streams. In ESWC 08, pages 448–462, 2008.

10. E. Bouillet, M. Feblowitz, Z. Liu, A. Ranganathan, A. Riabov, and F. Ye. A semantics-based
middleware for utilizing heterogeneous sensor networks. In DCOSS, pages 174–188, 2007.

11. J. P. Calbimonte, O. Corcho, and A. J. G. Gray. Enabling Ontology-based Access to Stream-
ing Data Sources. In ISWC, 2010.

12. CKAN - the Data Hub. http://thedatahub.org/.
13. O. Corcho et al. Characterisation mechanisms for unknown data sources. EU Project Plan-

etData (FP7-257641), Deliverable 1.1, 2011.
14. O. Corcho and R. Garcı́a-Castro. Five challenges for the semantic sensor web. Semantic

Web, 1(1):121–125, 2010.
15. DBpedia. http://wiki.dbpedia.org/.
16. E. Della Valle et al. It’s a Streaming World! Reasoning upon Rapidly Changing Information.

IEEE Intelligent Systems, 24(6):83–89, November/December 2009.
17. S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and Oranges: A Comparison

of RDF Benchmarks and Real RDF Datasets. In SIGMOD, 2011.
18. GeoNames Ontology. http://www.geonames.org/ontology/.
19. J. Gray. The Benchmark Handbook for Database and Transaction Systems. Morgan Kauf-

mann, 1993.
20. S. Groppe et al. A SPARQL Engine for Streaming RDF Data. In SITIS, 2007.
21. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for owl knowledge base systems. Web

Semantics: Science, Services and Agents on the World Wide Web, 3(2-3):158–182, 2005.
22. S. Harris and A. Seaborne. SPARQL 1.1 Query Language. W3C Working Draft 05 January

2012, World Wide Web Consortium. http://www.w3.org/TR/sparql11-query/.
23. T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-Intensive Scientific

Discovery. Microsoft Research, Oct. 2009.
24. J. Hoeksema. A Parallel RDF Stream Reasoner and C-SPARQL Processor Using the S4

Framework. Master’s thesis, VU University, Amsterdam, the Netherlands, Oct. 2011.
25. D. Le-Phuoc et al. A Native and Adaptive Approach for Unified Processing of Linked

Streams and Linked Data. In ISWC, pages 370–388, Bonn, Germany, 2011.
26. D. Le-Phuoc and M. Hauswirth. Linked open data in sensor data mashups. In Proceedings of

the 2nd International Workshop on Semantic Sensor Networks (SSN09), pages 1–16, 2009.
27. LinkedSensorData. http://wiki.knoesis.org/index.php/LinkedSensorData.
28. J. Pérez et al. Semantics and Complexity of SPARQL. ACM TODS, 34(3):1–45, 2009.
29. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C Recom-

mendation 15 January 2008, World Wide Web Consortium.
30. M. Schmidt et al. SP2Bench: A SPARQL Performance Benchmark. In ICDE, 2009.
31. J. Sequeda and O. Corcho. Linked stream data: A position paper. In Proceedings of Semantic

Sensor Networks, pages 148–157, 2009.
32. A. P. Sheth et al. Semantic Sensor Web. IEEE Internet Computing, 12(4):78–83, 2008.
33. SRBench wiki. http://www.w3.org/wiki/SRBench.
34. The Linking Open Data cloud diagram. http://richard.cyganiak.de/2007/10/lod/.
35. O. Walavalkar et al. Streaming Knowledge Bases. In SSWS, 2008.
36. K. Whitehouse, F. Zhao, and J. Liu. Semantic Streams: A Framework for Composable Se-

mantic Interpretation of Sensor Data. In EWSN, pages 5–20, 2006.
37. Y. Zhang et al. Benchmarking RDF Storage Engines. EU Project PlanetData, Deliverable

1.2, 2011.


