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Abstract. Many industrial use cases, such as machine diagnostics, can
benefit from embedded reasoning, the task of running knowledge-based
reasoning techniques on embedded controllers as widely used in indus-
trial automation. However, due to the memory and CPU restrictions of
embedded devices like programmable logic controllers (PLCs), state-of-
the-art reasoning tools and methods cannot be easily migrated to indus-
trial automation environments. In this paper, we describe an approach
to porting lightweight OWL 2 EL reasoning to a PLC platform to run in
an industrial automation environment. We report on initial runtime ex-
periments carried out on a prototypical implementation of a PLC-based
EL+-reasoner in the context of a use case about turbine diagnostics.

1 Motivation

Embedded controllers are extensively used in industrial environments for operat-
ing and monitoring technical machinery. They can be placed near the underlying
machine’s sensors and actuators to perform local computation tasks on-site with
quick reaction times. Much of the computation required for process control or
condition monitoring on industrial facilities is thus performed on computational
devices that are embedded in the surrounding field in a decentralized manner,
which is in contrast to the central computation performed on PCs in areas such
as business applications. When embedded controllers run knowledge-based sys-
tems that apply the computational techniques of automated reasoning, we speak
of embedded reasoning.

One particular use case for embedded reasoning is on-site diagnostics of in-
dustrial facilities based on diagnostic knowledge models for technical devices.
There, embedded controllers can perform reasoning on sensor data in the con-
text of diagnostic background knowledge to detect a machine’s faulty behavior
or to trace the causes thereof. Single diagnostic results reasoned over local de-
vice models can be combined to yield an overall diagnosis for the whole facility
under investigation. An example scenario is reactive diagnostics for steam and
gas turbines in electrical power plants, where early detection of anomalies in
running a plant helps avoid costly downtimes and repair of turbine machinery.

In contrast to business applications that run on PCs, knowledge-based mod-
eling and reasoning techniques, such as those used in the Semantic Web, are
not readily available in an automation environment. Embedded controllers are



subject to tight limitations on computational power or memory size and often
run proprietary operating systems for which no standard reasoning tools are
available, as reported in [11]. There, it was also observed that standard imple-
mentations of state-of-the-art reasoning algorithms designed for a PC environ-
ment cannot easily be migrated to embedded controllers due to their hardware
restrictions. Hence, there is the need for porting reasoning techniques to embed-
ded environments.

In the area of industrial automation, programmable logic controllers (PLCs)
are the most widespread type of embedded controller used for many real-time
automation tasks. Unlike general purpose computers, PLCs are designed for
control of industrial machinery and employ a processing scheme based on fixed
length execution time cycles to meet realtime requirements. On the other hand,
the Web Ontology Language (OWL) and its underlying reasoning services are
well suited for representing structural diagnostic models of technical devices
and their dependencies. Especially the OWL 2 profiles, which provide restricted
language variants with faster computation, are well suited for use in resource-
constrained embedded systems. Hence, it would be beneficial to port (light-
weight) OWL 2 reasoning to PLCs in order to provide for on-site processing
of knowledge models in the context of machine diagnostics and many other
industrial use cases.

The implementation of state-of-the-art OWL reasoning on a PLC platform,
however, has various difficulties. On the one hand, the typical methods used for
OWL reasoning, such as tableaux or consequence-driven procedures, are designed
to use dynamic data structures like tree models or concept mappings that are
continuously expanded, whereas on PLCs only static memory management is
available, and restricted to very limited size. Moreover, the dynamic runtime
behavior of standard reasoning algorithms operating on a set of tableau- or
consequence-like rules over an indeterminate number of iterations does not fit
the strictly cyclic processing pattern that PLCs follow.

In this paper, we present an approach to porting consequence-driven ontol-
ogy classification in the OWL 2 EL language profile, as e.g. described in [1, 9],
to PLC platforms in the context of an industrial diagnostics use case. We pro-
pose an architecture for using PLCs in combination with standard OWL tools
hosted on a PC environment, and we show how to overcome the architectural
discrepancies between standard implementation platforms for such procedures
and the PLC world. In particular, we present the use of a compact and efficient
axiom representation based on fixed length data structures, and we introduce
an interruption-safe saturation mechanism that fits a PLC’s cyclic processing
paradigm. We also report on initial runtime experiments carried out on our
prototypical implementation of a PLC-based embedded OWL 2 EL reasoner
covering the description logic EL+ to show the feasibility of our approach. This
also includes a formulation of a turbine diagnostic problem in terms of an EL+

ontology and the use of classification for deriving diagnoses. By this, we con-
tribute to making Semantic Web reasoning technology available on industrial
automation platforms dominated by the PLC paradigm.



2 Preliminaries

2.1 Programmable Logic Controllers

In the automation domain, programmable logic controllers (PLCs) are a flexible
means for solving a control problem. In contrast to control wiring contactors
and relays, a PLC uses a specific program to realize a control task. PLCs are the
central part of today’s automation solutions for control of machines or plants.
They are networked to central and/or distributed I/O modules connected to
sensors and actuators, display devices for monitoring and operation, as well as
a programming device or SW development environment for programming and
configuration [5].

In order to behave like hardwired logics consisting of contactors and relays,
where logical operations are effectively executed in parallel, a PLC executes
its sequential user program cyclically. Within each execution cycle, a PLC first
stores a snapshot of its current input signals in a process image input table in the
CPU memory. The CPU executes the user program step-by-step, one command
at a time. During command execution, signal states are taken from the process
image input table, processed and stored in the process image output table. At
the end of an execution cycle, when the user program has finished, a PLC sets
output signals according to their values in the process image output table. The
shorter the cycle time of the PLC user program, the more frequently input signals
are read and output signals are set. PLC commands can be clustered into binary
logic operations (e.g. AND, OR), memory functions (e.g. bit assignment), move
functions (e.g. register load/store from/to memory), counters and timers [4].

The work presented in this paper is based on Siemens’ SIMATIC automation
system. The SIMATIC automation system is a family of different products [5]
built around the SIMATIC S7 controller. There are several PLC types avail-
able, addressing a range of performance and availability requirements. Usually,
a power supply unit, CPU module and I/O modules are installed in a mounting
rack and form a station. The SIMATIC DP distributed I/O system allows for
input/output modules to be installed nearby a machine, connected to a PLC
by means of a PROFIBUS network. SIMATIC HMI (Human Machine Inter-
face) provides a number of different products for visualization, ranging from
simple text displays to interactive touch screen panels. SIMATIC NET provides
networking of all SIMATIC stations for data exchange, programming and con-
figuration. OPC1 is an interface standard for communication between several
stations or to PCs. STEP 7 is the standard tool for configuration and pro-
gramming of the user program in any of the available languages (Ladder Logic
(LAD, a representation similar to relay logic diagrams), Function Block Diagram
(FBD), Statement List (STL, an Assembler-like language) or Structured Control
Language (SCL, a high-level language similar to Pascal)).

In addition to hardware-based PLCs, SIMATIC WinAC provides software
that emulates a PLC on a standard Industrial PC (IPC) running Microsoft
Windows.

1 http://www.opcfoundation.org/



2.2 Ontologies and the EL+ Description Logic

In the area of knowledge-based systems and the Semantic Web, ontologies are
the key artifact for representing and reasoning about knowledge of a specific
domain, such as turbine machinery. Compared to subsymbolic approaches for
capturing domain knowledge, ontologies allow for an explicit representation of
domain concepts and their interrelations as well as for automated reasoning
based on the clear semantics of logic. In this work, we build on the prominent
OWL Web Ontology Language which is semantically founded on the description
logic (DL) formalism [2]. In its second version, OWL comes with a number of so-
called profiles that offer language variants with reduced expressivity and better
computational properties. In particular, we use (a part of) OWL 2 EL [13], which
is based on the tractable description logic EL+ [1]. Research has shown that the
OWL 2 EL profile is especially well suited for representing diagnostic models,
including the well-known SNOMED-CT2 and GALEN3 medical ontologies.

The basic building blocks for representing knowledge in EL+ are (atomic)
concepts, such as GasTurbine, and roles, such as hasComponent. An EL+ ontol-
ogy O is a set of concept inclusion axioms of the form GasTurbine ⊑ Turbine

(stating that every GasTurbine is a Turbine) and role inclusion axioms of the
form directlyControls ◦ hasSubComponent ⊑ controls (stating that control is prop-
agated over the partonomy of a system). The symbol ⊑ can be read as logical
implication. The sets NO

C and NO
r denote the concept and role names that oc-

cur in an ontology O and form its signature. Complex concepts can be com-
posed from simpler concepts and roles using the concept constructors ⊓ and
∃. An example for a complex EL+ concept inclusion axiom is GasTurbine ⊑
∃ hasComponent .Combustor, stating the fact that any gas turbine has a combus-
tor as its component. For further details on EL+, see [2, 13].

The main features that EL+ lacks compared to OWL 2 EL are concept
disjointness by means of the bottom concept ⊥, and nominals {o}, which allow
expression of facts about particular instances of a concept. The main reasoning
task in EL+ (and a central reasoning task for description logics in general) is
called classification, it builds up a complete inferred subsumption hierarchy of all
atomic concepts mentioned in an ontology O. This can be understood as deriving
deductively all concept subsumptions A ⊑ B that are a logical consequence of
O, expressed formally by O |= A ⊑ B, for A,B ∈ NO

C

2.3 Consequence-driven Reasoning in EL+

Classification of EL+ ontologies can be realized efficiently (i. e., in polynomial
runtime) using a so-called consequence-driven reasoning approach, as described
in [1] or [9]. Since our embedded reasoning method for PLCs also employs a
consequence-driven approach, we give an introduction to consequence-driven
reasoning for EL+, following the approach from [1], in this section.

2 http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
3 http://www.openclinical.org/prj_galen.html



C ⊑ C1
(CR1) [C1 ⊑ D ∈ O]

C ⊑ D

C ⊑ C1 C ⊑ C2
(CR2) [C1 ⊓C2 ⊑ D ∈ O]

C ⊑ D

C ⊑ C1
(CR3) [C1 ⊑ ∃ r .D ∈ O]

C ⊑ ∃ r .D
C ⊑ ∃ r .C1 C1 ⊑ C2

(CR4) [∃ r .C2 ⊑ D ∈ O]
C ⊑ D

C ⊑ ∃ r .D
(CR5) [r ⊑ s ∈ O]

C ⊑ ∃ s .D
C ⊑ ∃ r1 .C1 C1 ⊑ ∃ r2 .D

(CR6) [r1 ◦ r2 ⊑ s ∈ O]
C ⊑ ∃ s .D

Fig. 1. Completion rules for EL+

In a preprocessing step, the input ontology O is normalized into a semanti-
cally equivalent ontology ∥O∥ which contains only axioms of the form (NF1)
C1 ⊑ D, (NF2) C1⊓C2 ⊑ D, (NF3) C1 ⊑ ∃ r .D, (NF4) ∃ r .C2 ⊑ D, (NF5) r ⊑
s, and (NF6) r1 ◦ r2 ⊑ s for atomic concepts C1, C2 and D, and roles r, 2, r1, and
r2. Next, starting from the trivially true tautologies C ⊑ ⊤ and C ⊑ C (for each
concept name C in ∥O∥), the consequence-driven classification algorithm derives
additional valid subsumptions that are also logical consequences of ∥O∥ based
on the information stated explicitly in ∥O∥. This is done based on a set of so-
called completion rules shown in Figure 1, which can be understood as follows:
If the premise(s) above the horizontal line are known to be consequences of ∥O∥
and the axiom in square brackets is contained in the ontology ∥O∥, then the
conclusion below the horizontal line is a valid consequence of ∥O∥ as well. Note
that there is exactly one completion rule for each type of normalized axiom; the
application of completion rule (CRi) is therefore guarded by the presence of
an appropriate (NFi)-axiom in ∥O∥. When the completion process terminates
(i. e. no more rules are applicable), all valid subsumptions have been derived.

The procedure outlined above is typically realized based on two mappings
S : NO

C 7→ P(NO
C ) and R : NO

r 7→ P(NO
C × NO

C ) which make explicit the sub-
sumptions derived so far4. For this, observe that the premises and conclusions
of the completion rules only consist of two types of axioms, namely C ⊑ D and
C ⊑ ∃ r .D. These axioms are represented in the mappings as follows: C ⊑ D
corresponds to a mapping entry D ∈ S(C), and C ⊑ ∃ r .D is represented by
{C,D} ∈ R(r). Following the intuition given above, these mappings are initial-
ized by S(C) = {C,⊤} for each concept name C in ∥O∥ and R(r) = ∅ for each role
name r in ∥O∥. Testing the premises in the rules from Figure 1 then corresponds
to lookups in the mappings S and R. Analogously, the conclusions correspond
to the addition of elements to the respective mapping. The classification result
of the original input ontology O can directly be read from S after termination.

The algorithm presented above has been implemented successfully in the
CEL5 reasoner. Naturally, such a practical implementation requires additional

4 P(·) denotes the powerset operator
5 http://lat.inf.tu-dresden.de/systems/cel/



considerations for minimizing memory usage and maximizing performance; in
[3], an overview of the respective decisions made for the CEL system is given.
Most recent developments for consequence-driven OWL 2 EL classification are
reported in [9] for the ELK6 reasoner system. One central optimization, the
representation of entities using integer numbers, has also been employed for our
embedded implementation.

2.4 Related Approaches to Embedded Reasoning

Although there are a variety of approaches for reasoning on embedded (or mo-
bile) devices, we are not aware of any other research on implementing reason-
ing algorithms for PLCs or similarly constrained devices. The Pocket KRHyper
system7, for example, realizes DL reasoning via a hyper tableau calculus for
first-order logic [12]. It is implemented as a Java 2 Mobile Edition8 application
and thereby overcomes any need to address hardware issues. On the downside,
KRHyper can only be used on systems for which a Java Virtual Machine is
available; PLCs and other automation systems do not fall into this category and
their cycle-based paradigm makes an easy port unlikely. More closely related to
the approach presented in this paper is [11], whose authors propose a RETE-
based OWL 2 RL reasoner for an embedded system with a 400 MHz CPU and
64 MB of RAM that features a Linux operating system. Although standard DL
reasoners such as Pellet9 or FaCT++10 cannot be used sensibly in this environ-
ment either, the availability of a standard operating system permits the authors
to use standard programming paradigms. Interestingly, the authors also con-
sidered the possibility of using consequence-driven reasoning (namely CEL) on
their platform; this was impractical due to the lack of an Allegro Common Lisp
environment. In a very similar fashion, Bossam11 uses the RETE algorithm to
realize an OWL reasoner with a small memory footprint [8], but it requires a
Java Virtual Machine just like the Pocket KRHyper system.

3 Industrial Application of Embedded EL+ Reasoning

In this section, we describe the use of embedded EL+ reasoning for industrial di-
agnostics, and we sketch a suitable architecture for such reasoning in automation
environments.

3.1 Diagnostics of Technical Devices with Embedded Reasoning

The main motivation for our research on embedding reasoning on PLCs is indus-
trial diagnostics. In particular, we consider a use case involving reactive diagnos-

6 http://code.google.com/p/elk-reasoner/
7 http://mobilereasoner.sourceforge.net/
8 http://www.oracle.com/technetwork/java/javame/index.html
9 http://clarkparsia.com/pellet/

10 http://owl.man.ac.uk/factplusplus/
11 http://bossam.wordpress.com/



tic reasoning for steam and gas turbines. In the scenario considered here, a power
generation command and control center (CCC) is responsible for a large number
of plants scattered all over the globe. Each plant typically comprises one to three
turbines which are equipped with several hundred sensors each, mounted to the
numerous components of the turbine. All sensors typically provide measurements
at a rate between 0.1 and 1.0 Hertz, sending their data to the CCC. Engineers at
the CCC have the task of monitoring the turbines, identifying faults, and taking
reactive measures for preventing subsequent damage.

To illustrate how diagnostic knowledge in the turbine domain can be repre-
sented using EL+ description logic axioms, consider the expert statement ”fan
blade vibrations and fluctuations in the combustion chamber’s temperature in-
dicate a can flame failure”. Based on a diagnostic meta model that relates the
unknown FaultMode that a certain System operatesIn to the observable Symptoms
it shows (see Figure 2), the above statement can be formalized as follows:

System ⊓ ∃ isInfluencedBy .(Fan ⊓ ∃ shows .Vibrations) ⊓
∃ isInfluencedBy .(CombChamber ⊓ ∃ shows .TempFluctuations)

⊑ ∃ operatesIn .CanFlameFailure

To understand how classification can be employed for diagnostics in this case,
assume that the compositional model of the turbine also contains the axioms
Turbine ⊑ ∃ hasComponent .Fan and Turbine ⊑ ∃ hasComponent .CombChamber de-
scribing the turbine components, and the role inclusion axiom hasComponent ⊑
isInfluencedBy stating that subcomponents influence their supercomponents. This
static knowledge about a turbine is complemented by additional axioms based on
sensor measurements: If the vibration sensor mounted at the fan hub detects vi-
brations exceeding a threshold, a corresponding axiom Fan ⊑ ∃ shows .Vibrations

is added. Analogously, temperature fluctuations at the combustion chamber lead
to the addition of the axiom CombChamber ⊑ ∃ shows .TempFluctuations. Once
this knowledge about currently observed symptoms has been added, the result-
ing ontology entails the axiom Turbine ⊑ ∃ operatesIn .CanFlameFailure (among
others).12 By triggering the classification process either regularly based on a
timer or after every addition of a symptom, a diagnostic system can therefore
determine the state of the turbine based on a formal model of the system and its

12 Since EL+ does not support Aboxes, we must encode facts as terminological axioms.
A more natural modelling approach using Abox axioms could be realized in EL++.

System

Symptom

FaultMode

operatesIn

isInfluencedBy shows
Concept

role

Domain Range

Fig. 2. A basic diagnostic model formalized in EL+ (c.f. [6]).



Fig. 3. An architecture for embedded reasoning on PLCs.

diagnoses. If a faulty situation is detected, this can be signaled to the operator
at the CCC, but also be used as input for other diagnostic components in a
hierarchical setting.

Similar models are used in existing solutions such as [7, 10], which typically
assume that standard computer systems can be used for evaluating the models,
e.g. by moving all data to a central store. To address the special restrictions
posed by a PLC environment, we present a dedicated approach to embedded
diagnostic reasoning, as follows.

3.2 An Architecture for Embedded EL+ Reasoning

Figure 3 shows an architecture for embedding EL+ reasoning in a PLC. Its core
part is the CEL Reasoning component, running on a PLC, which implements
consequence-driven EL+ reasoning based on the CEL approach from [1]. The
Knowledge Base subcomponent contains both application-specific background
knowledge as well as axioms reflecting current PLC sensor input.

The CEL Reasoning component is based on a very compact ontology rep-
resentation suitable for resource-constrained embedded devices, such as a PLC,
which are limited in computing power and memory. In order to be deployed on
a PLC, any OWL ontology has to be converted to a compact ontology repre-
sentation in a preprocessing step during development. For this purpose, a PLC
Interface component running on a PC provides for ontology preprocessing as
well as OPC-based communication between the PC and the PLC. The Ontology
Preprocessing subcomponent reads a use case specific OWL ontology from a file.
Next, its Normalization subcomponent normalizes ontology axioms to syntac-
tically match the axiom types (NFi) used in the derivation rules of the CEL
algorithm. In a subsequent ontology pre-processing step, the Internalization sub-
component maps ontology literals (concept names, role names) to corresponding
integer numbers, which are used as indices in an array-based, compact ontol-



ogy representation on the PLC. Via OPC communication, the normalized and
internalized ontology is finally deployed on the PLC.

During runtime, an application running on a PC, or alternatively a use case
specific user program running on another superordinate PLC, may trigger the
CEL Reasoning component on the PLC by sending an appropriate signal across
the OPC communication link. Before the reasoning process, a Sensor Input Pro-
cessing component of the PLC reads input signals from sensors, maps them
to respective ontology axioms and adds them to the knowledge base. Accord-
ingly, axioms that are no longer valid due to changes in sensor signals are being
removed. When the reasoning process has been finished (indicated by an appro-
priate flag), the application or user program is reported relevant parts of the
reasoning result, depending on the use case to be realized.

4 Consequence-driven EL+ Reasoning on a PLC

In this section, we describe aspects of the implementation of consequence-driven
EL+ reasoning in PLC environments, where restrictions preclude a direct imple-
mentation of the CEL algorithm as described in [1, 3].

4.1 Difficulties with Reasoning Algorithms in PLC Environments

PLCs have very limited computing power and working memory capacity com-
pared to contemporary desktop PCs. This, and their architectural design tailored
to automation tasks, imposes various difficulties on the task of porting algorithms
for efficient embedded OWL reasoning to a PLC environment.

One difficulty is the lack of dynamic data structures and memory allocation
mechanisms. DL reasoning methods like tableaux or consequence-driven satura-
tion procedures dynamically expand their data structures during the construc-
tion of tree-like models or derivation structures and partly also use backtracking
to discard previously computed intermediate results. The CEL algorithm, in
particular, operates on the mappings S and R, which are dynamically expanded
by derived axioms during ontology classification. PLC platforms, however, only
support static memory management based on a fixed size memory block scheme.
Therefore, the consumption of PLC memory needs to follow a strategy of effi-
cient memory layout based on upper bounds for the number of axioms that can
potentially be derived in S and R, such that the very limited overall memory is
not quickly exceeded by allocating sparsely populated blocks.

Another difficulty is rooted in the cyclic processing paradigm of PLCs. The
repeated processing of a memory image of input signals within a fixed time slice
is contrary to algorithms that expand their results non-deterministically within
processing times that depend on intermediate results. The CEL algorithm, in
particular, has two sources of dynamic expansion of results. Firstly, the appli-
cation of the derivation rules (CRi) is triggered by both original axioms in
the ontology and derived consequences in S and R, while the sequence of their
application has an influence on the overall number of derivation steps required
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Fig. 4. Time cycle problems with PLCs.

for classification. Hence, the number of rule applications is highly dynamic and
cannot be determined in advance. Secondly, the time required for performing the
various rules is also dependent on the previously computed consequences in S
and R and differs from rule to rule. A rule can either be performed very quickly
compared to the maximum cycle time of the PLC, or its runtime can even ex-
ceed this limit, in which case its interruption would lead to a PLC error state.
Figure 4 depicts a cyclic view of the CEL algorithm, comparing the PLC’s cyclic
processing pattern (tMaxCyc) to the overall classification time (tCEL) composed
of the runtimes for individual rule applications (tRi). The overall runtime tCEL

needs to fit into the cyclic time pattern given by tMaxCyc, such that no appli-
cation of a rule (CRi) with duration tRi exceeds the maximum cycle length.
However, an intricate rule like (CR5) might not fit in a single cycle.

In the following sections, we describe our approaches to overcome these dif-
ficulties.

4.2 Compact Axiom Representation

The restricted memory available on PLCs requires a compact representation of
axioms in the ontology ∥O∥ based on an integer encoding of concept and role
names, which can then be used for efficient index-based memory array access.
We achieve this by exploiting the fact that the normalized axioms in ∥O∥ are
of one of the forms (NFi), all of which require at most three class/role names
as their parameters. Thus, we can encode any normalized axiom α ∈ ∥O∥ as a
four-tuple

α = (T, p1, p2, p3),

where T encodes the type of normal form axiom (1-6) and the pi are the inte-
ger numbers for concept and role names obtained by simply enumerating the
elements in NO

C and NO
r , e.g. in a lexicographic ordering with regard to their

string name representation. Although the different positions of such an axiom
tuple could be encoded with variable bit lengths depending on the number of
concept and role names, we have chosen a representation that uses a two byte
integer value per position for a total of eight bytes for an axiom, since such a
fixed size encoding scheme provides for more efficient access. Based on this ax-
iom encoding, we represent the ontology ∥O∥ on the PLC side as a fixed length
array whose size of 8 ·#∥O∥ bytes is determined during the preprocessing phase.

We represent the classification results stored in the mappings S and R as
fixed length bit arrays S[i][j] and R[i][j][k], while i, j range over concept name



and k over role name index numbers. We have to assume that, in the worst case,
all possible axioms of the forms A ⊑ B and A ⊑ ∃ r .B are being derived, which
provides the following upper bounds for the lengths of the arrays.

lS = (#NO
C )2 , lR = (#NO

C )2 ·#NO
r

Thus, the overall memory required for representing the reasoning results in S
and R is given by ⌈(lS + lR)/8⌉ in bytes. Efficient access to these arrays through
the indices i, j, k also provides good performance for the frequent checks on S
and R in the rules (CRi).

While PC-based reasoners can optionally use such compact memory repre-
sentations for optimization, they are necessary for porting reasoning algorithms
to a PLC to handle the above mentioned memory issues.

4.3 Interruption-safe EL+ Saturation

To address the difficulty about the PLC’s cyclic processing paradigm, our objec-
tive is to safely fit the whole required computation time tCEL for classification
into the periodic cycles without running into error states by exceeding tMaxCyc

in a single rule application. To this end, we have implemented a time-out mech-
anism that uses a PLC’s integrated interruption features for program-triggered
termination of the current processing cycle. Figure 5 shows a timeline for the
behavior of this interruption mechanism.

Shortly before the end of the cycle time tMaxCyc is reached while processing
a derivation rule, our mechanism initiates an artificial interrupt that saves the
current state of rule processing to be reentered at the beginning of the next
cycle. The state consists of the index variables i, j, k that serve to iterate over
the structures S and R for checking a rule’s applicability, as well as the currently
processed axiom α ∈ ∥O∥ and the type of rule (CRi) whose processing is to
be reentered. In this way, we abstract from the cyclic processing constraints of
a PLC, spreading the required overall calculation time tCEL over an arbitrary
sequence of cycles. In Section 5, we will show that the overhead for saving and
reentering rule processing states is negligible for reasonable values of tMaxCyc.

Notice that this interruption mechanism allows us to dynamically add di-
agnostic EL+-reasoning to any control program installed on a PLC whenever
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Fig. 5. Cycle time interruption mechanism.



the maximum cycle length determined by the control task is not fully exploited.
The rest of tMaxCyc not used for control tasks can then be utilized for diagnostic
reasoning for many pre-installed PLCs in the automation field.

5 Evaluation

In this section, we report on first experimental results that we carried out to
evaluate our embedded reasoning approach. For this purpose, we first describe
our experimental setting, before we report on performance experiments.

5.1 Evaluation Setting

The hardware setting used for our evaluation consists of a SIMATIC IPC427C
industrial PC with various sensors and a WinCC HMI interface attached to it
via PROFINET. It is equipped with an Intel Core2 Duo U9300 1.2GHz processor
and 956 MB RAM and runs Microsoft Windows XP SP2 as its operating system.
During the SIMATIC WinAC RTX installation, the Ardence RTX 8.1 real time
kernel is installed which adds real time capabilities to the OS. On this basis,
the Software PLC SIMATIC WinLC (Windows Logic Controller) RTX v4.4.1
SP1 performs the tasks of a S7-300 or S7-400 PLC in our setting. The WinLC
software provides the full functionality of an S7-300 or S7-400 PLC, although
the processing time depends on the actual CPU used. It hosts our prototypical
PLC-based EL+-reasoner implemented in SCL following the architecture and
implementation features described in the sections 3 and 4 . For OPC communi-
cation we use the Siemens OPC Server v7.0 and a Java-based PC-client.

As test data we have used a set of EL+ ontologies that stem from the turbine
diagnostics use case described in Section 3. They are listed in Table 1 with their
number of concepts, roles and axioms. The base ontology Otur is a local diagnos-
tic model that was used to capture the causal relationships between symptoms
and faults for certain parts of turbine machinery in the EL+ formalism. Since in
Otur not all the EL+ constructs are used, however, we have produced a modified
version O+

tur, which contains some additional axioms to cover the full expressiv-
ity of EL+ (the missing construct was conjunction ⊓). As a result, classification
of O+

tur triggers all the derivation rules (CRi) at least once and thus comprises
a suitable test data ontology for our system. To scale to larger test data, we
extended the ontologies Otur and O+

tur to multiplied versions that contain mul-
tiple renamed copies of the original axioms, indicated by a factor in their name
(e.g., Otur10 contains 10 copies of the original axiom set in Otur). The largest
ontologies Otur22 and O+

tur16 have been chosen such that their classification uses
up all of the PLC’s total memory of 4MB. In this way we get runtime results
for the case of maximal memory usage as an upper bound for answer times.

5.2 Performance Experiments

Correctness Tests. To ensure correctness of our implementation, we performed
a back-to-back test of our PLC-based EL+ reasoner compared to a standard



Table 1. Detailed overview of ontologies, their memory consumption and runtimes.

Ontology memory in kByte runtime in ms

O #NO
C #NO

r #∥O∥ ∥O∥ S R total % tCEL ttotal
1 Otur 28 4 49 0.38 0.10 0.38 0.02% 29 250
2 Otur5 136 20 245 1.91 2.26 45.16 1.18% 773 641
3 Otur10 271 40 490 3.83 8.97 358.60 9.02% 1774 2156
4 Otur22 595 88 1078 8.42 43.22 3803.00 94.00% 8848 9141
5 O+

tur 34 7 77 0.60 0.14 0.99 0.03% 113 375
6 O+

tur3 100 21 231 1.80 1.22 25.63 0.68% 976 1188
7 O+

tur5 166 35 385 3.00 3.36 117.73 2.99% 2815 2937
8 O+

tur16 529 112 1232 9.63 34.16 3825.95 94.36% 29586 29781

reasoner available on a PC platform. For this purpose, we used the Java-based
JCEL13 reasoner as a reference system in order to compare the classification
hierarchy output by our system through the structure S to that produced by
JCEL. We noticed no differences in the output of the two systems for our turbine
diagnostics ontologies or for some EL+ ontologies available on the web. Although
this is not a 100% test, we argue that these tests strongly support the correctness
of our implementation, especially since the ontology O+

tur is modified such that
it covers all features of EL+ and triggers all the derivation rules (CR1) - (CR6),
which ensures a certain coverage of the underlying formalism’s constructs.

Runtime Performance and Scalability Test. Runtime and scalability per-
formance requirements for embedded reasoning very much depend on the par-
ticular use case in question. For the diagnostics use case that we consider here,
neither the ontologies get typically very large as any single PLC does only have
to reason over the local diagnostic model for its surrounding machinery, nor the
answer times for retrieving diagnoses need to be in real time due to the offline
nature of the diagnostic task. Therefore, we varied the ontology size in our exper-
iments in the lower ranges (compared to typical benchmark ontologies) and we
accepted answer times for retrieving diagnoses within seconds or even minutes.

Notice that a direct comparison of classification times with those of PC-based
systems, such as JCEL, does not provide useful insights on performance issues for
PLC-based reasoning, since today’s standard PCs are much more powerful than
PLCs in terms of CPU and memory. Instead, we are interested in the memory
consumption and runtime behavior of our PLC-based reasoning approach in the
light of the requirements of our diagnostics use case. In particular, we are inter-
ested in bringing embedded reasoning onto existing PLC hardware pre-installed
in the automation field alongside the control tasks that these PLCs already run.
To this end, we report on investigations about memory consumption, optimal
cycle length and answer times for diagnoses in the following.

13 http://jcel.sourceforge.net/
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Fig. 6. Cycle Time Evaluation.

Memory Consumption. The memory required for classifying an ontology O in
the PLC is given by the size and signature of O, while NO

C and NO
r determine

the size of the data arrays for the mappings S and R. Table 1 shows the sizes
of these memory components for all the test ontologies used. It also shows the
percentage of the PLC’s total memory used for classification. It can be seen that
most of the memory used is reserved for the classification results stored in S
and R, while the representation of the ontologies’ axioms occupy only a small
amount, for all but the smallest ontologies. Classification of the single original
and modified diagnostic models Otur and O+

tur requires only modest memory,
while for their multiplied versions a polynomial increase can be observed due to
the respective growth of the arrays for S and R. Only for the largest artificially
increased models of over a thousand axioms does memory consumption reach
critical values. For the expected sizes of local diagnostic models, it should thus
be feasible to run diagnostic reasoning on a pre-installed PLC in addition to the
automation tasks it already runs, without consuming too much of its memory.

Cycle Time Optimization. User programs performed on pre-installed PLCs often
do not require the possible maximum cycle time allowed by the process to be
controlled but run much faster. By exploiting such potential process control
idle times, additional tasks like diagnostic reasoning can be run within a PLC’s
execution cycle at no cost of critical CPU power if the cycle length for reasoning
is chosen small enough to fit the idle time.



To this end, we investigated the overhead that comes with small execution
cycle times for EL+ reasoning in our approach, where any interruption of rule
execution requires the saving and reentering of the current execution state. The
diagram in Figure 6 shows the relative classification times in relation to dif-
ferent cycle lengths for all the test ontologies. (The longest classification time
corresponds to 100%.) It can be seen that the overhead for rule interruption
is only significant for very small cycle lengths less than about 100ms. Beyond
this threshold the overhead becomes negligible for all the test ontologies con-
sidered. This suggests that from a cycle time of 100ms or greater, PLC-based
EL+-reasoning runs in an optimal mode without wasting a significant amount
of execution time due to interruption handling. Since this is a rather low num-
ber, we are hopeful to encounter many cases for adding EL+-based diagnostic
reasoning to pre-installed PLCs, exploiting potential process control idle times.

Runtime Performance. As for runtime measurement, Table 1 shows the time
for actual classification on the PLC (tCEL) and total time (ttotal) including
OPC communication between the PLC and PC (ontology deployment + result
reporting). Classification times for the original diagnostic model Otur as well
as for the modified O+

tur are within milliseconds and are thus rather fast. Also
the multiplied models of up to five or even ten copies are being classified within
a few seconds. For the larger samples Otur22 and O+

tur16, classification requires
several seconds up to half a minute. Since these two ontologies already fill the
maximum memory of the PLC, we can say that the answer times in our approach
lie within feasible bounds for the task of offline diagnostics. The OPC-based
communication causes a significant relative overhead for small ontologies and
becomes negligible for larger models.

6 Conclusion

In this paper, we have presented an approach to porting OWL 2 EL reason-
ing to PLCs, a type of embedded controller prevalent in industrial automation.
We have described how deficiencies about the differing paradigms of PLCs and
PC-hosted reasoning algorithms can be overcome by a compact memory repre-
sentation strategy and an interruption-safe variant of the CEL [1] classification
procedure suitable for PLCs. Furthermore, we have reported on promising initial
experimental results carried out on a prototypical implementation of a PLC-
based EL+ reasoner in the context of a use case about diagnostics for turbine
machinery, in which we prove the feasibility of our approach in terms of memory
consumption and answer times for retrieving diagnoses.

A particular finding we have made here is that attempts of porting reasoning
procedures to strongly restricted embedded devices could greatly benefit from
avoiding too much dynamics and flexibility in the data structures used, ideally
keeping them as static as possible. In this work, we could successfully employ
low-degree polynomial upper bounds on the maximum size of derivation results
that reside in memory at a single time. For tableau-style algorithms, whose tree-
like models appear to be more difficult to handle, the separate calculation of
single tableau branches at once goes in this direction.



To the best of our knowledge, this is the first endeavor of bringing description
logic reasoning to the PLC-dominated industrial automation field. Building on
this enabling step of providing a platform for embedded reasoning, we intend to
utilize this platform in our use case of turbine diagnostics in forthcoming field
tests and experiments to have an impact on the maintenance of power plants
in the energy sector. Next to machine diagnostics, we see many other potential
use cases for embedded reasoning in industry, such as component verification
in industrial engineering or the support of condition monitoring and control
tasks, that benefit from exploiting an explicit representation of expert knowledge
models brought close to industrial machinery.

This research was funded in part by the German Federal Ministry of Education and
Research under grant number 01IA11001.
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