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Abstract. The distributed and heterogeneous nature of Linked Open
Data requires flexible and federated techniques for query evaluation.
In order to evaluate current federation querying approaches a general
methodology for conducting benchmarks is mandatory. In this paper, we
present a classification methodology for federated SPARQL queries. This
methodology can be used by developers of federated querying approaches
to compose a set of test benchmarks that cover diverse characteristics
of different queries and allows for comparability. We further develop a
heuristic called SPLODGE for automatic generation of benchmark queries
that is based on this methodology and takes into account the number of
sources to be queried and several complexity parameters. We evaluate
the adequacy of our methodology and the query generation strategy by
applying them on the 2011 billion triple challenge data set.

1 Introduction

The Linked Data cloud offers a huge amount of machine readable, structured
data and its full potential can only be leveraged by querying over multiple data
sources. Therefore, efficient query processing on the Linked Data cloud is cur-
rently an active research area and different novel optimization approaches have
been published [1, 9, 15, 29, 31]. As there is currently no common benchmark for
federated Linked Data query evaluation, different datasets and different queries
are being employed for the evaluation, which often prevents a direct comparison
of approaches. A common benchmark based on actual queries on the Linked
Data cloud could solve this problem. But since applications for Linked Data
query processing are not in wide use yet such query collections are currently not
available. Hence, the use of real queries in a Linked Data benchmark is not a
viable option anytime soon.

Benchmarks serve different purposes. A major objective is to compare the
performance of different implementations. Moreover, the quality of a system can
be assessed by testing common cases and corner cases, e. g. queries with high
complexity or queries which generate large intermediate result sets. Artificial
datasets are usually highly structured [6] and allow for a well controlled evalua-
tion environment. But an adaptation mimicking the Linked Data characteristics



is not straightforward. Besides, benchmarks like SP2Bench [27], LUBM [10], or
BSBM [4] are typically designed for evaluating centralized RDF stores and we
consider them inappropriate for the evaluation of query processing across Linked
Data. Evaluation approaches based on real data can use hand-crafted queries,
like in FedBench [26], or automatically generated queries as in [11]. Either way,
the queries should expose characteristics which are assumed to cover a suffi-
ciently large variety of real queries. However, meaningful queries can only be
generated manually with a lot of effort because the content of the data sources
needs to be analyzed in advance. In contrast, automatic query generation is
less tedious and can produce many queries with specific characteristics, even for
varying data sources as in the Linked Data cloud.

In this paper we abstract from specific query interfaces, i. e. query processing
could be based on SPARQL endpoints, URI resolution, or the integration of data
dumps. Our contribution is a methodology and a toolset for the systematic
generation of SPARQL queries which cover a wide range of possible requests on
the Linked Data cloud. A classification of query characteristics provides the basis
for the query generation strategy. The query generation heuristic of SPLODGE
(SPARQL Linked Open Data Query Generator) employs stepwise combination
of query patterns which are selected based on predefined query characteristics,
e. g. query structure, result size, and affected data sources. Constant values are
randomly chosen and a verification step checks that all constraints are met.

In the following, we start with a review of related work. Then, in Section 3,
we provide some necessary background information on both RDF and SPARQL.
In Section 4 we conduct a thorough investigation of query characteristics in the
context of Linked Data and, in Section 5, we continue with the presentation of
our query generation approach SPLODGE. We give some insights on the imple-
mentation of our system in Section 6 and evaluate our approach in Section 7. In
Section 8 we conclude with a summary and some final remarks.

2 Related Work

Federated SPARQL query processing is receiving more attention lately and a
number of specific approaches have already been published, e. g. [30, 23, 11, 25,
12, 15, 13, 29, 9]. Stuckenschmidt et al. [30] employ indices for matching path
patterns in queries while Harth et al. [11] use a (compressed) index of sub-
jects, predicates, and objects in order to match queries to sources. DARQ [23]
and SPLENDID [9] make use of statistical information (using hand-crafted data
source descriptions or VOID [2], respectively) rather than (indices of) the content
itself. FedX [29] focuses on efficient query execution techniques using chunked
semi-joins. Without any precomputed statistics and a source selection based on
SPARQL ASK queries it solely relies on join order heuristics for the query opti-
mization. Recent work by Buil-Arada et al. [5] investigates the complexity and
optimization of SPARQL 1.1 federation queries where data sources are already
assigned to query expressions.



The evaluation of the above approaches is usually conducted with artificial
datasets or real datasets using hand-crafted queries. LUBM [10] was one of the
first benchmarks for evaluating (centralized) RDF triple store implementations.
It allows for generating synthetic datasets of different sizes representing rela-
tions between entities from the university domain. The Berlin SPARQL Bench-
mark (BSBM) [4] and the SP2Bench [27] are more recent benchmarks, as well
based on scalable artificial datasets. BSBM is centered around product data
and the benchmark queries mimic real user interaction. SP2Bench employs the
DBLP publications schema. Its data generator ensures specific characteristics
of the data distribution while the benchmark queries include also less common
and complex expressions like UNION, FILTER, and OPTIONAL. LUBM, BSBM, and
SP2Bench are hardly applicable for benchmarking federation systems because
the data is very structured and Linked Data characteristics can not be achieved
through data partitioning.

Benchmarking with real Linked Data is, for example, provided by FedBench
[26]. It employs preselected datasets from the Linked Data cloud, e. g. life science
and cross domain. Different query characteristics are covered with common and
complex query pattern which yield in some cases many hundred thousand re-
sults. However, due to the limitation to a few hand-picked datasets and queries,
FedBench lacks scalability with respect to the Linked Data cloud. DBPSB [17]
employs benchmark queries which are derived from query logs of the official
DBpedia endpoint. All queries are normalized, clustered, and the most frequent
query patterns, including JOIN, UNION, OPTIONAL, solution modifiers, and filter
conditions, are used as basis for a variable set of benchmark queries. It remains
open if the queries, which cover only DBpedia, are representative for Linked
Data. LIDAQ [31] provides benchmark queries based on crawled Linked Data.
The query complexity, using either star-shaped or path-shaped join patterns, is
limited to a maximum of three joins. Other query operators or additional solu-
tion modifiers are not considered. The query generator produces sets of similar
queries by doing random walks of certain breadth or depth. DBPSB and LIDAQ
do not consider result size or number of data sources in their query generation.

3 Background

The Resource Description Framework RDF is the core data representation format
in the Linked Data cloud. Let U be a set of URIs, L a set of literals and B a set of
blank nodes as defined in [14] with U , L and B being pairwise disjoint. The sets
U , L, and B provide the vocabulary for representing knowledge according to the
guidelines for publishing Linked Open Data [3]. The basic concept of knowledge
representation with RDF is the RDF triple or RDF statement.

Definition 1 (RDF statement, RDF graph). An RDF statement is a triple
S ∈ (U∪B)×U×(U∪L∪B). An RDF graph G is a finite set of RDF statements.
For an RDF statement S = (s, p, o) the element s is called subject, p is called
predicate, and o is called object.



Example 1. A listing of RDF statements describing a publication by Paul Erdös
(namespace definitions are omitted for better readability).

1 dblp:ErdosL96 rdf:type foaf:Document.

2 dblp:ErdosL96 dc:title ”d−complete sequences of integers”.

3 dblp:ErdosL96 dc:creator dblp:Paul Erdos.

4 dblp:ErdosL96 dc:creator dblp:Mordechai Levin.

5 dblp:Paul Erdos rdf:type foaf:Person.

6 dblp:Paul Erdos foaf:name ”Paul Erdos”.

7 dblp:Mordechai Levin foaf:name ”Mordechai Levin”.

8 dblp:Mordechai Levin rdf:type foaf:Person.

In this paper, we are interested in settings where RDF statements are dis-
tributed over a (possible large) set of different sources.

Definition 2 (Federated RDF Graph). A federated RDF graph F is a finite
set F = {G1, . . . ,Gn} with RDF graphs G1, . . . ,Gn. Let F = {G1, . . . ,Gn} be a
federated RDF graph. By abusing notation, we sometimes write (s, p, o) : G to
denote that (s, p, o) ∈ G for G ∈ F .

Example 2. We extend Example 1 (as illustrated in [8]) with RDF statements
distributed across three Linked Data sources.

DBLP DBpedia Freebase

dblp:Erdos96

foaf:Document

”d-complete sequences of integers”

dblp:Paul Erdosdblp:Mordechai Levin

foaf:Person

”Paul Erdős””Mordechai Levin”

rdf:type

dc:title

dc:creator
dc:creator

rdfs:labelrdfs:label

rdf:type
rdf:type

dbpedia:Paul Erdős

dbpedia:Hungary

dbpedia:Budapest

”Paul Erdős”

dbpp:name
dbpp:nationality

dbpp:birthPlace

fbase:guid.9202a8c04...

fbase:hungary

”Erdős Pál”

fbase:value

fbase:nationality
owl:sameAs

owl:sameAs

owl:sameAs

The SPARQL Protocol and RDF Query Language (or simply SPARQL) [22] is
the standard query language for RDF graphs. The core notion of SPARQL are
graph patterns. Let V be a set of variables disjoint from both U and L and E(V )
the set of filter expressions on V , cf. [22].

Definition 3 (Graph Patterns). A triple pattern is a triple in (U ∪B∪V )×
(U ∪ V ) × (U ∪ L ∪ V ) and a basic graph pattern is a set of triple patterns.
Every basic graph pattern is also a graph pattern. If P1, P2 are graph patterns
and E ∈ E(V ) then P1 UNION P2, P1 OPTIONAL P2, and P1 FILTER E are graph
patterns as well.

A basic graph pattern consisting of one or more triple patterns is a template
that is matched in an RDF graph if all triple patterns are satisfied. Furthermore,



the UNION combination of two patterns match if any of the two pattern matches.
The OPTIONAL pattern matches if its first pattern matches. Additionally, further
variables might get bound if the second pattern matches as well. The FILTER

pattern matches if the first pattern matches and the filter expression is satisfied.
SPARQL supports four different types of queries, namely SELECT, ASK, CON-

STRUCT, and DESCRIBE queries. Their main difference is the format of the query
result. Given a graph pattern P and a set x ⊆ V the query SELECT x WHERE P
returns tuples of variable bindings for x such that the graph pattern P , with
variables substituted accordingly, is present in the queried RDF graph. A query
ASK P returns true iff the graph pattern P is satisfiable (with some variable
bindings). A recent study [20] of query logs of the official DBpedia endpoint
revealed that the number of CONSTRUCT and DESCRIBE queries is not significant.
Therefore, we will ignore those query types in this paper. Let BGP (P ) be the
set of basic graph patterns and TP (P ) be the set of triple patterns appearing in
a graph pattern P . For a graph pattern P and an RDF graph R let eval(P,G)
be the set of possible assignments of the variables in P — i. e. functions σ of the
form σ : V → U ∪B ∪ L — such that the resulting graph pattern is satisfied in
G. We refer the interested reader to [22] for the complete semantics of SPARQL.

The SPARQL federation extension [21] introduces the two keywords SERVICE
and BINDINGS and enables SPARQL queries on federated RDF graphs. While the
SERVICE keyword is used for specifying RDF graphs to be queried within the
federated system, the BINDINGS keyword provides means for passing the values
of bounded variables to sub-queries on other RDF graphs. However, this exten-
sion only allows for the specification of federated queries when the individual
RDF graphs are known to be able to answer the given sub-queries. The task of
determining which RDF graphs to ask for certain sub-queries is outside the scope
of the federation extension but has to be addressed by other mechanisms.

4 Parameterizing Queries

At the end of the previous section we pointed out that SPARQL querying in fed-
erated environments poses serious demands on distributed querying techniques.
In order to evaluate approaches for federated SPARQL processing, multi-source
queries are of major interest. Moreover, SPARQL queries used for evaluation are
typically classified and parametrized along several further dimensions, e. g. with
respect to complexity. However, due to the sparsity of the Linked Data cloud
[24] there are today only a few real-world queries that show these characteris-
tics. For an objective evaluation and comparison with state-of-the-art systems
the developer of a federated query processing system, however, needs real data
and realistic SPARQL queries. Therefore, specifically designed evaluation queries
should cover common characteristics of real queries and include a sufficiently
large set of SPARQL features. In the following, we develop a methodology and a
toolkit that can be used by developers of approaches to federated query process-
ing for evaluating their system in a reproducible and comparable manner. There,
a developer’s first step is to select and combine query parameters to fit the de-



sired evaluation scenario, e. g. common queries and corner cases. The next step is
the query generation according to the defined parameters. Finally, the evaluation
is conducted and results are presented. In order to make an evaluation repro-
ducible, the chosen parameters and queries should be disclosed as well. In the
following, we discuss different properties of SPARQL queries including aspects
of distributed query processing.

We studied analysis results of real SPARQL queries [20, 16, 7] and features of
RDF benchmarks [10, 4, 27, 11, 17] to compile query characteristics (i. e. proper-
ties) which we consider important for a query processing benchmark on Linked
Data. One may argue about the choice of query characteristics. However, we
do not claim completeness and like to encourage extensions of the classification
parameters.

The first set of query characteristics relate to the semantic properties of SPARQL,
i. e. the Query Algebra.

Query Type. SPARQL supports four query types, namely SELECT, CONSTRUCT,
ASK, and DESCRIBE. They define query patterns in a WHERE clause and return
a multiset of variable bindings, an RDF graph, or a boolean value, respec-
tively. DESCRIBE queries can also take a single URI and return an RDF graph.

Join Type. SPARQL supports different join types, i. e. conjunctive join (.), dis-
junctive join (UNION), and left-join (OPTIONAL). These joins imply a different
complexity concerning the query evaluation [28].

Result Modifiers. DISTINCT, LIMIT, OFFSET, and ORDER BY alter the result set
which is returned. They also increase the complexity for the query evaluation.

The next properties deal with the Query Structure, i. e. how basic graph patterns
are combined in a complex graph pattern.

Variable Patterns. There are eight different combinations for having zero to
three variables in subject, predicate, or object position of an RDF triple
pattern. Some of these combinations, like bound predicate with variables in
subject and/or objection position, are more common than others.

Join Patterns. Joins are defined by using the same variable in different triple
patterns of a basic graph pattern. Typical join combinations are subject-
subject joins (star shape) and subject-object joins (path shape). The com-
bination of star-shaped and path-shaped joins yields a hybrid join pattern.

Cross Products. Conjunctive joins over triple patterns which do not share a
common variable imply cross products. While the join parts can be evaluated
independently, the cross product may involve large intermediate result sets.

The third group of properties deals with Query Cardinality, i. e. the number of
sources, the number or joins, and the result size. Following, let P be a graph
pattern, F be a federated RDF graph, and let FP ⊆ F the set of relevant data
sources for P , i. e. FP = {G ∈ F | ∃ S ∈ TP (Q) : eval(S,G) 6= ∅ }.

Number of Sources. Our benchmark methodology is designed for query exe-
cution across Linked Data. Therefore, the number of data sources involved
in query answering is an important factor, i. e. sources(P ) = |FP |.



Number of Joins. Joining multiple triple patterns increases the complexity of
a query. The number of joins joins(P ) is defined for basic graph patterns,
i. e. conjunctive joins over a set of triple patterns, as shown below.

Query Selectivity. The proportion between the overall number of triples in
the relevant graphs and the number of triples which are actually matched by
query patterns is the query selectivity sel(P ). A query with high selectivity
yields less results than a query with low selectivity.

joins(P ) =
∑

bgp∈BGP (P )

(|bgp| − 1), sel(P ) =

∑
G∈FP

|eval(P,G)|∑
G∈FP

|G|

According to the above characteristics, we parameterize benchmark queries
such that they cover common queries and corner cases. As result of the query
generation we want queries with a specific query structure which span multiple
Linked Data sources. Hence, the parameters for join structure and the number of
data sources involved are predominant for the query generation. However, there
is a dependency between join structure and covered sources. Typical SPARQL
queries have path-shaped and star-shaped join patterns or a combination thereof.
Path joins span multiple data sources if two patterns are matched by different
data sources but have an entity in common which occurs in subject or object
position, respectively. Note that for a unique path the number of different data
sources is limited by the number of joined triple pattern. Star-shaped join pat-
terns, like {(?x,isA,foaf:Person),(?x,foaf:name,?name)}, which match en-
tities in multiple data sources are less interesting for Linked Data queries because
they represent unions of unrelated entities.

The combination of path-shaped and star-shaped join patterns produces more
complex query structures. They are supported in the query parameterization by
defining join rules. These include the join combination, usually via subject or
object, and the attachment position with respect to an existing path-shaped join
pattern. Corner cases can exhibit a high number of joined triple patterns leading
to long paths or “dense” stars. Note that, for reasons of simplicity, we do not
consider joins via the predicate position and loops in the query patterns.

5 Query Generation with SPLODGE

With the definition of the query parameterization we can now go into detail of our
query generation process SPLODGE. The query generator SPLODGE produces
random queries with respect to the query parameters using an iterative approach.
In each step, a triple pattern is chosen according to the desired query structure
and added if the resulting query pattern fulfills all cardinality constraints. The
iteration finishes when all structural constraints are satisfied or when they cannot
be satisfied without a violation of the cardinality constraints. In the latter case,
the generator cannot produce any query. As the last step, a query is modified
with respect to the complexity constraints. In the following, the algorithm and
the heuristics are explained in more detail.



5.1 Path Join Pattern Construction

Our query generator SPLODGE starts with the creation of path-shaped join pat-
terns. Let F = {G1, . . . ,Gn} be a federated RDF graph. Given a parameterization
of n patterns and m sources (m ≤ n), the algorithm constructs a sequence of
triple pattern

PathJoin(n,m) = (t1, . . . , tn) ∈ ((U ∪ L ∪ V )× (U ∪ V )× (U ∪ L ∪ V ))n

such that

∀ i = 1, . . . , n− 1 : obj(ti) = subj(ti+1) and |{Gj | ∃j : ti ∈ Gj}| = m.

If m < n then several triple patterns can have the same data source. The dis-
tribution of sources among triple patterns is randomly chosen in order to allow
for variations.

Computing a valid sequence PathJoin(n,m) directly on the original data, is,
in general, infeasible due to the huge search space in a federated RDF graph. We
therefore take a heuristic approach which facilities statistical information and
cardinality estimation heuristics. In order to limit the effort needed to acquire
sophisticated statistics on the various data sources, we restrain our attention to
path-shaped join pattern generation with bounded predicates. Note, however,
that bound predicates may be replaced with variables in a post-processing step.

Definition 4 (Linked Predicate Patterns). A linked predicate pattern l is
a quadruple l = (p1,G1, p2,G2) with p1, p2 ∈ U , G1,G2 ∈ F , and G1 6= G2. The
set of valid linked predicate patterns in F is defined as

L(F) = {(p1,G1, p2,G2) | ∃ s, o, x ∈ U ∪B ∪ L : (s, p1, x) ∈ G1 ∧ (x, p2, o) ∈ G2}

Further, we define the following sets of triples which can be matched with the
first or second pattern in a linked predicate pattern

φ(p1,G1, p2,G2) = {(s, x) | (s, p1, x) ∈ G1 ∧ (x, p2, o) ∈ G2}
τ(p1,G1, p2,G2) = {(x, o) | (s, p1, x) ∈ G1 ∧ (x, p2, o) ∈ G2}

The combination of some L1 = (p1,G1, p2,G2) and L2 = (p2,G2, p3,G3) will
only return results if τ(p1,G1, p2,G2) ∩ φ(p2,G2, p3,G3) 6= ∅, i. e. bindings for
the object o in the first linked predicate patterns must also be part of the join
bindings x in the second linked predicate pattern, e. g. {(?s,dc:creator,?x),
(?x,owl:sameAs,?o)} and {(?s,owl:sameAs,?y),(?y,dbpp:name,?o)} can be
combined to form a path of three patterns (cf. example 2), but there will be no
result if “Mordechai Levin” is bound to ?x because he is not included in DBpedia.

In order to compute the result size for a path-shaped join pattern we need
to estimate the overlap between two arbitrary linked predicate patterns. A com-
putation of all possible join paths is not feasible for such a large dataset.

Definition 5 (Joined Predicate Pattern Size). For a sequence of linked
predicate patterns (p1,G1), . . . , (pn,Gn) we define the join size as∏

i=1..n

|σpi(Gi)| ·
∏

i=2..n−1
js(pi−1,Gi−1, pi,Gi, pi+1,Gi+1)



with σpi
(Gi) = {(s, pi, o) ∈ Gi} and the join selectivity (js)

js(pi−1,Gi−1, pi,Gi, pi+1,Gi+1) =
|τ(pi−1,Gi−1, pi,Gi)| · |φ(pi,Gi, pi+1,Gi+1)|

|σpi(Gi)|2

The pattern join selectivity is a value in the interval [0, 1]. The lower the value,
the higher the selectivity of the pattern combination and the less results will
be returned. In order to prevent pattern combinations that do not return any
results, we prefer selectivity values closer to 1.

5.2 Star Join Pattern Construction

Star-shaped join patterns extend path-shaped join pattern at predefined anchor
points, i. e. at a specific triple pattern in the triple pattern path. Without an
anchor point the star join will represent an individual query pattern which is
combined via UNION with the other query patterns. The query parameterization
also defines the number of triple patterns in the star join and if the join variable
is in subject or object position. The anchor triple pattern is automatically part
of the star join. Hence, it defines the join variable, the source restriction, and
the first predicate to be included in the star join.

StarJoin(n,G) = (t1, . . . , tn) ∈ ((U ∪ L ∪ V )× (U ∪ V )× (U ∪ L ∪ V ))n

such that

∀ i = 1, . . . , n : subj(t1) = . . . = subj(tn) ∨ obj(t1) = . . . = obj(tn) and

|{t ∈ StarJoin(n,G)} ∩ {t ∈ PathJoin(k, l)}| = 1

The second condition above formalizes the requirement that the star join inter-
sects with the main path join in one triple pattern. As with path-shaped join
pattern, the computation of StarJoin(n,G) combinations on the original data
is, in general, infeasible. Thus, statistics-based heuristics are also employed to
combine triple patterns with bound predicates. A star-shaped join pattern will
only produce results if at least one entity matches all of the triple patterns, i. e.
every predicate occurs in a combination with the same entity (always in subject
or object position) in the same data source. We utilize Characteristic Sets [18]
to capture the co-occurrence of predicates with the same entities. Characteristic
sets are basically equivalence classes based on distinct predicate combinations.
They keep track of the number of different entities and the number for RDF
triples for each predicate in the characteristic set. The latter value can be higher
due to multi-value predicates. In addition, we extended the statistics with infor-
mation about the data source a characteristic set occurs in.

Definition 6 (Characteristic Sets). We define the characteristic set SC(s,G)
of a subject s (cf. [18]) with respect to a data source G and a federated graph F
with G ∈ F via

SC(s,G) := {p | ∃ o : (s, p, o) ∈ G}



and abbreviate SC(F) := {SC(s,Gi) | ∃ s, p, o : (s, p, o) ∈ Gi}. Further, reverse
characteristic sets are used to estimated the result size for star-join patterns
with the join variable in object position.

The number of results for a star-join pattern need to be taken into account for
the cardinality estimation of the path-join pattern it is attached to. Therefore, we
count the number of triples in source G which contain the subjects (or objects) of
all matching characteristic sets combined with the predicate of the anchor triple
pattern. The selectivity is calculated similar to Definition 5 as shown below and
multiplied with the cardinality of the path-join pattern:

js(G, (p1, . . . , pn)) :=
|{(s, p1) | {p1, . . . , pn} ⊆ SC(s,G)}|

|σp1
(G)|

So far, we described how a star- join pattern is combined with a path-join pat-
tern. This approach is extensible to combine multiple patterns and produce
complex queries with mixed join patterns as depicted in Fig. 1. Due to space
constraints, we do not go into further details.

?a ?b ?cp1 p2 p3

p4

p5

p6
?d

?e

?f

?g

?h

p7

Fig. 1. Query structure generation process. First, triple patterns are combined as path-
joins, i. e. (?a p1 ?b), (?b p2 ?c), (?c p3 ?d), then star-joins are created for ?a, ?b, ?c.

6 Implementation

The implementation of the query generation is divided into two phases: statistics
collection and the query generation based on the statistics. For our prototype
implementation1 we used the 2011 billion triple challenge dataset2 containing
about 2 billion quads, i. e. subject, predicate, object, and context. We did some
pre-processing and cleanup and aggregated all contexts to their common domain
name (i. e. {john,jane}.livejournal.com→ livejournal.com). As a result, we reduced
the 7.4 million different contexts to 789 common domains. Query patterns across
different data sources are created based on these reduced domain contexts.

SPLODGE requires statistical information during query generation, i. e. for
selecting triple patterns and for estimating the result size and the number of
involved data sources. Due to the huge size of the Linked Data cloud, there is a
trade-off between the level of statistical details and the overall space requirement
for storing the meta data. Therefore, SPLODGE employs only predicate statistics,
as the number of distinct predicates is much smaller compared to the number of
distinct URIs in the datasets. Moreover, comprehensive statistics also impose a
significant processing overhead.

1 SPLODGE is open source and available at http://code.google.com/p/splodge/
2 http://km.aifb.kit.edu/projects/btc-2011/



6.1 Pattern Statistics

For deciding whether triple patterns can be combined during query construc-
tion, we need information about the co-occurrence of predicates in RDF state-
ments. For path-joins two predicates co-occur if the respective RDF statements
are joined via subject/object. In addition to knowing whether predicates p1, p2
co-occur we also need the number #G(p) of RDF statements in each G that
mention predicate p, i. e. #G(p) = |{(s, p, o) ∈ G}|.

Example 3. Following table shows co-occurrence statistics for path-joins (cf.
Def. 4). Each tuple (p1,G1, n1, p2,G2, n2) represents a linked predicate pattern
(s, p1, x) ∈ G1 ∧ (x, p2, o) ∈ G2 with the respective RDF triple counts n1 and n2.

p1 G1 n1 p2 G2 n2
owl:sameAs http://data.gov.uk/ 22 foaf:knows http://dbpedia.org 31
owl:sameAs http://open.ac.uk/ 58 foaf:knows http://dbpedia.org 17
rdfs:seeAlso http://bio2rdf.org/ 15 rdf:type http://www.uniprot.org/ 38
rdfs:seeAlso http://zitgist.com/ 49 rdfs:label http://musicbrainz.org/ 36

For star-joins, we rely on Characteristic Sets [18]. They define equivalence classes
for resources based on predicate combinations, i. e. URIs and blank nodes in sub-
ject position of RDF statements are in the same characteristic set if they have
exactly the same set of predicates. Characteristic sets count the number of enti-
ties in such an equivalence class and the number of occurrences for each predicate.
The latter helps to identify frequent occurrences of multi-valued predicates. We
extend the characteristic sets to include the data source as well.

Example 4. The table below shows the statistical data for a specific character-
istic set defined by the predicates (rdf:type, rdfs:label, rdf:sameAs). Each entry is
associated with one data source G and contains the number of resources #res
and the number of RDF triples ni per predicate pi in the data source.

G #res p1 n1 p2 n2 p3 n3
http://bio2rdf.org/ 632 rdf:type 632 rdfs:label 844 owl:sameAs 632

http://www.uniprot.org/ 924 rdf:type 924 rdfs:label 924 owl:sameAs 924
http://data.gov.uk/ 1173 rdf:type 1421 rdfs:label 1173 owl:sameAs 1399

For the sake of readability, we use URIs (with namespace prefixes) in the examples
above. In reality, we employ a dictionary for all predicate and source URIs and
only store the entry’s index number in the statistics table.

6.2 Verification

The purpose of the verification step is to ensure that all desired constraints
are met by the generated queries. The query semantics and the query structure
are easy to check by inspecting the syntax and query patterns of the produced
SPARQL queries. In fact, these constraints are always met as the query genera-
tion is driven by the specified query structure. However, the generated queries



may not satisfy the cardinality constraints due to the estimations used by the
heuristics. A reliable validation would have to execute each query on the actual
data sets which is impossible because of the sheer size of the Linked Data cloud
and the absence of a query processing implementation which can execute all pos-
sible types of benchmark queries in a short time. Moreover, corner case queries
are intended to be hard to evaluate.

Our solution in SPLODGE is to compute a confidence value for each query.
It defines how likely a query can return the desired number of results. We reject
queries if their confidence value lies below a certain threshold. The confidence
value is computed based on the minimum selectivity of all joins in a query.

7 Evaluation

Having explained the technical details and algorithms for the query generation
we will now have a look at the evaluation of the generated queries. Evaluation
in this context basically means checking if the generated queries meet the prede-
fined cardinality constraints, i. e. if they can actually return results which were
obtained from different data sources. Due to the random query generation pro-
cess using cardinality estimates it is not uncommon that different queries with
the same characteristics basically yield different result sizes and cover a range
of various data sources. Hence, we want to evaluate two aspects: (1) how many
queries in a query set fail to return any result, and (2) how good does the esti-
mated result size match the actual results size of the queries. Furthermore, we
count the number of data sources which are involved in answering a queries.
To allow for an objective comparison of the effectiveness of the triple pattern
selection criteria we perform the query generation with three different heuristics
which are used for choosing triple patterns. For this evaluation the queries are
restricted to SPARQL SELECT queries with conjunctive joins of triple patterns
with bound predicate and unbound subject and unbound object.

7.1 Query Creation Heuristics

A naive approach would just randomly select predicates for use in the triple
patterns of the query. For our comparison we use three different pattern selection
algorithms, ranging from basic to more elaborate heuristics in order to increase
the probability that the generated queries meet the desired constraints.

Baseline uses random selection of data sources and bound predicates in the data
sources. It does not check if there is a connection between the data sources
via the chosen predicates.

SPLODGElite creates queries as described in Sec. 5. Two triple patterns are
combined (in a path-join or star-join) if the statistics indicate the existence
of resources which can be matched by the respective predicate combination.
SPLODGElite does not apply validation based on a confidence value.

SPLODGE extends SPLODGElite with a computation of confidence values based
on individual join selectivity. It discards queries if the confidence value is
below a certain threshold, i. e. if individual joins in a query are too selective.



7.2 Setup

Representative query parameterizations are obtained by analyzing the different
query structures of the FedBench queries [26]. An overview for the life-science
(LS), cross-domain (CD), and linked data (LD) queries is given in Fig. 2. For sim-
plification of the presentation, we only show the join structure and omit bound
subjects/objects, filter expressions and optional parts. Queries with unbound
predicate were not considered. We can basically model all of the join patterns
with the parameterization described in Sec. 4. But due to space restrictions we
will only consider selected queries in the evaluation. Query generation and eval-
uation need to be tailored for a specific dataset. We chose the 2011 billion triple
challenge dataset. It contains about two billion triples and covers a large number
of Linked Data sources.
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Fig. 2. Query Patterns as exposed by the FedBench queries [26] with bound predi-
cates. Query set (1) has a single star-join, sets (2)-(4) are path-joins combined with
star-joins, (5) are two combined star-joins, and sets (6)-(8) are combinations of multi-
ple path-joins and star-joins. (1):LD[5,7], (2):LD[1,2,9,10,11], (3):CD[5,6,7],LS[3],LD[3]
(4):CD[3],LD[8], (5):LS[6,7], (6):CD[4], (7):LS[4], (8):LS[5],LD[4].

The major challenge for the query generation is to produce path-join queries
across different datasets. The sparsity of links between datasets makes it difficult
to create long path-joins and ensure non-empty result sets. To better explore
this problem space, we focused in our evaluation on path-join queries where
each triple triple pattern needs to be matched by a different data source. Such
queries represent interesting corner cases, as all triple patterns must be evaluated
independently. Moreover, since the triple patterns have only bound predicates,
many data source may be able to return results for a single triple pattern, thus
increasing the number of data sources that need to be contacted. We generated
sets of 100 random queries for path-joins of length 3–6 and executed them to
obtain the actual number of results. All triples of the billion triple challenge
dataset 2011 were loaded into a single RDF3X [19] repository.

7.3 Results

The evaluation of all queries from a query set on such a large dataset takes
quite long, i. e. several hours for specific queries. The main reason is that some
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Fig. 3. Comparison of SPLENDIDlite and SPLENDID using different confidence values,
i. e. minimum join selectivity of 0.0001, 0.001, or 0.01, respectively. For each batch of
100 queries the number of non-empty results (left) and the minimum, maximum result
size and the quantiles for 0.2, 0.5 and 0.8 (right) are shown.

queries produce very large (intermediate) result sets. A timeout of two minutes
is set for a query to finish. For each batch of 100 queries we count the number of
queries which returned non-empty results. Additionally, minimum, maximum,
median, as well as 0.2 and 0.8 quantiles for all result sizes in a query batch are
measured. We compare the results for SPLENDIDlite and the regular SPLENDID
query generation where the confidence value is defined by a minimum selectivity.

Figure 3 shows that SPLENDIDlite produces only a few queries and the base-
line even fails to create any query which can return results. Using the confidence
value based on join selectivity increases the number of non-empty results sets
significantly, i. e. from 20 to around 60 for three join patterns and by a factor of
3 to 30 for more join patterns. However, for path-joins with six triple patterns
it was not possible to generate any query where the minimum join selectivity
is 0.01. Considering the minimum and maximum result size we can not see any
clear behavior. The minimum result size is always well below 10. The maximum
goes in some case up to several million results while the 80% quantile remains
below 10000 results (except for a selectivity of 0.001 and six join patterns). All
query sets have a median value of less than one hundred results. The difference
is smallest when the query sets have a similar number of non-empty results.

We also observe that many predicates in the queries represents schema vo-
cabulary, e. g. rdf:type, rdfs:subClassOf, owl:disjointWith. This becomes
even more noticeable the longer the path-join.

8 Summary and Future Work

We presented a methodology and a toolset for systematic benchmarking of feder-
ated query processing systems for Linked Data. The novel query generation ap-
proach allows for flexible parameterization of realistic benchmark queries which
common scenarios and also corner cases. A thorough analysis of query character-
istics was conducted to define the dimensions for the parameterization space of
queries, including structural, complexity, and cardinality constraints. The imple-
mentation of SPLODGE is scalable and has proven to produce useful benchmark
queries for the test dataset of the 2011 billion triple challenge.



So far, the query generation handles all predicates equally. With respect to
sub-type and sub-property definitions a separate handling of schema information
would allow for creating queries suitable for inference benchmarking. For future
work, an extension of the statistical information would be helpful to include filter
expression in the generated queries. Finally, we intend to use the benchmark
queries for the evaluation of federated query processing on Linked Data.
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