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Abstract. Existing approaches for link prediction, in the domain of
network science, exploit a network’s topology to predict future connec-
tions by assessing existing edges and connections, and inducing links
given the presence of mutual nodes. Despite the rise in popularity of
Attention-Information Networks (i.e. microblogging platforms) and the
production of content within such platforms, no existing work has at-
tempted to exploit the semantics of published content when predicting
network links. In this paper we present an approach that fills this gap by
a) predicting follower edges within a directed social network by exploit-
ing concept graphs and thereby significantly outperforming a random
baseline and models that rely solely on network topology information,
and b) assessing the different behaviour that users exhibit when making
followee-addition decisions. This latter contribution exposes latent fac-
tors within social networks and the existence of a clear need for topical
affinity between users for a follow link to be created.

1 Introduction

Attention-Information Networks, or ‘Hybrid Networks’ [10], lie at the intersection
of social and information networks, users can follow other users and subscribe
to the content they publish. Romero and Kleinberg [8] describe such directed
interpolating networks as enabling users to become information hubs, in essence
such users act as real-time sensors by disseminating information about real-world
events and publishing information as it becomes available. Given the large uptake
of platforms, such as Twitter (31.9 % increase in users in 20115), that are com-
posed of attention-information networks and the increased number of users to
choose from, platform users must carefully select the individuals that they wish
to listen to. Understanding who will follow whom and how users base their deci-
sions - i.e. uncovering follower-decision behaviour patterns - has two key benefits:
firstly, the dynamics of network growth in attention-information networks could
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be understood and therefore the social capital of the networks be predicted; and
secondly, understanding how users behave in terms of their follower-decisions
would facilitate audience building, a key interest for online marketing and brand
managers who are keen to increase their broadcast spectrum.

Constrained attention capability means that users must decide on who they
should follow. One would assume that a followee’s content must be of interest to
the follower, and this has indeed been identified in prior work by Schifanella et
al. [9]. We therefore hypothesise that Following a user is performed when there
is a topical affinity between the follower and the followee. However, to date no
work has attempted to explore the differing behaviour that users may exhibit
when making follower-decisions. We hypothesise that Users who do not focus on
specific topics do not base their follower decisions on topical information but on
social factors, as so-called unfocussed users who publish content about diverse
subjects are not interested in subscribing to other users given a particular subject
affinity. Further, we also hypothesise that Users who are more socially connected
are driven by social rather than topical factors, given that users who build up a
large followee network are more driven by connecting to people.

To explore these hypotheses we present an approach to predict links between
a follower and recommended followees that exploits the semantics of user content,
using tags and the concepts they refer to in order to measure the semantic
relatedness of users. Our contributions are as follows:

– An approach to predict links in attention-information networks that explores
social, topical and visibility factors, based on behavioural differences with
regards to user types (alluded to in our hypotheses).

– Evaluation using the KDD Cup 2012 dataset from Tencent Weibo6 that: a)
shows significantly better performance than a random baseline and network
topology models, and b) identifies a general pattern for follower-behaviour
that is driven by topical affinity.

We have structured the paper as follows: Section 2 formulates our link prediction
problem and describes recent work within this area. Section 3 describes the
dataset used for our experiments. Section 4 details the prediction approach and
the features engineered to capture social, topical and visibility dynamics, and
Section 5 describes the method for concept disambiguation. Section 6 presents
our experiments to identify follower-decision behaviour patterns and observe how
users differ, and Section 7 discusses the findings in comparison with recent work.
Section 8 finishes the paper with conclusions and plans for future work.

2 Background and Related Work

2.1 Problem Formulation

A social network can be modelled as a graph G = 〈V,E〉 where V denotes the
set of users (nodes) in the social network and E is the set of edges (〈u, v〉 ∈ E)
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between nodes. Link prediction is the task of predicting which nodes u, v ∈ V
will form an edge between one another at a future time step. Leden-Nowell and
Kleinberg [7] formulated this problem as detecting the changes in a graph be-
tween consecutive time steps (t0 < t′0 < t1 < t′1), by using information in G[t0, t

′
0]

to predict the edges in G[t1, t
′
1]. However, on attention-information networks the

mechanisms through which edges, and therefore social links, are created requires
that the link prediction problem is altered to account for recommendations -
where a constrained set of possible nodes to connect to is considered. The in-
troduction of recommendation features, such as the ‘Who to follow ’ feature on
Twitter, has shifted the problem to a user-centric task such that a user u is pro-
vided with a set of recommendations R(u) to connect to where R(u)∩Γ (u) = ∅
and Γ (u) denotes the ego-centric network of u. Therefore the problem we are
addressing is the induction of a link function between users given previously pro-
vided recommendations: f : V ×R→ {0, 1}, where the set of possible mappings
is constrained to the recommendation set of each user (R(u)).

2.2 Related Work

Recent work within the domain of link prediction is divisible into two strands:
approaches that use network topologies and approaches that use local metadata.
Starting with network topology driven methods, Golder et al. [5] modelled di-
rected paths through networks to assess their effect on follower decisions on Twit-
ter and found that increased transitivity (i.e. directed transitive connections) and
common followers was correlated with follower addition. Also experimenting with
Twitter, Yin et al. [10] found that 90% of created links are to users within 2 hops
of a given user in the social network. Yin et al. assessed path structures through
intermediate nodes and derived probabilities based on intermediary connections
to predict links. Romero and and Kleinberg [8] examined ‘directed closure’ (i.e.
directed form of triadic closure) in attention-information networks and found
that different link formation behaviour exists between sub-networks. Backstrom
and Leskovec [1] proposed a supervised random walks method with restarts that
combines node features with edge features to predict future links on Facebook.
Edges are equivalent to the affinity between u and v in the context of our work
and include features such as common friends. Zhou et al. [12] performed link
prediction experiments over a range of network datasets ranging from a protein-
protein interaction network through to a co-authorship network, where each
network was undirected. The authors found common neighbours between nodes
to achieve the best performance.

Focussing now on metadata-driven approaches, Schifanella et al. [9] assessed
the correlation between tag affinity (overlap in tag vocabularies) and social neigh-
bours for both Flickr7 and Last.fm8 users, finding that users who are close so-
cially have common tags. Similar work by Leroy et al. [6] performed link pre-
diction of Flickr users but with no a priori graph information, only using group

7 http://www.flickr.com
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membership information to indicate common interests. The authors’ approach
computed a probabilistic graph in a first bootstrap phase before using this infor-
mation with existing topology-based measures from [7] to boost recall, finding
that performance is favourable for common neighbours. Brzozowski and Romero
[2] explored the effect of ‘homophily ’ on user recommendations, measuring this
using the Dice coefficient of two users’ sets of tags. However, contrary to find-
ings in [9], Brzozowski and Romero [2] found that using similar tags was not
useful information for predicting links and instead found mutual followers to
be a good predictor. Yin et al. [11] predicted links using random walks with
restarts by forming an augmented graph space of person nodes and attribute
nodes, where attributes correspond to title keywords in an example DBLP co-
authorship dataset, better performance was achieved when using local attributes
(i.e. keyword information) rather than existing social connections.

Although existing approaches [9, 6, 2, 11] consider metadata when predicting
edges between people the information is constrained to tag sets or group member-
ships and does not consider concept information. Furthermore, although several
works indicate the benefit of using topical information [9, 6], there has been no
examination of the follower-decision behaviour patterns. In this paper we present
an approach that exploits semantics to gauge the topical affinity between a user
and potential followee using concept graphs, and examine the decision patterns
within our induced models.
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(a) Categories per Tag
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(b) Recommendations per User

Fig. 1. Distributions in the dataset. Figure 1(a) shows that the distribution of cate-
gories per tag and Figure 1(b) shows the distribution of recommendations per user.

3 Dataset Description

The dataset that we used for the experiments described later in this paper was
the KDD Cup 2012 dataset from the follower prediction task. Participants were
given a rich collection of data that included: a) a training set of users with their
recommendations, and whether they followed the items or not; b) the following
graph of users; c) a set of keywords (tags) found within each user’s content,
and; d) item-categorisation data. This latter information is what we used for
our concept hierarchy as a given item (i.e. a user) is placed within a hierarchical



concept graph - e.g. v is placed in 0.1.4.3 where the dot represents the branch-
ing of the concept hierarchy - and is also assigned several tags. This data has
been manually labelled by the providers of the dataset. Both concept labels and
keywords (tags) are anonymised and are replaced by numeric identifiers, so we
do not see the underlying data. While the described concept hierarchy is used
in our experiments, there is no obstacle to using some other concept hierarchy
or structure (e.g. DBPedia) with our approach.

Figure 1(a) shows that many tags appear in a low number of categories, (µ =
2.275, σ = 5.903), however certain tags (in the long tail) are extremely ambiguous
and appear in many different categories, thus demonstrating the need for concept
disambiguation. Figure 1(b) shows the distribution of recommendations per user
(µ = 29.540, σ = 47.492), with a skew towards lower recommendation counts and
only a few users having a large number of recommendations.

4 Predicting Follower-Decisions

In this paper we tackle the problem of predicting links between a user and
recommended followee users. We formulate the problem as one of inducing a
function between the set of users and their recommendations: f : V ×R→ {0, 1}.
Our goal is to explore various features and: a) identify the best performing
general model over all users; and b) explore the decision behaviour of users and
the extent to which this differs between them. In order to facilitate accurate
predictions and explore the different factors that drive link creation we explore
the use of three feature sets: social, topical and visibility. The features contained
within these sets are each derived in a pairwise fashion such that if we are
provided with a set of recommendations for u denoted by R(u), we measure
each feature based on the common information shared over u and v ∈ R(u).9

4.1 Social

The decision of which recommendations to accept may differ between users, for
instance it might be the case that one user may only follow another with whom
they share a mutual friend. In order to assess such dynamics we measure four
social features that account for the topology of the network and the existence of
edges present within the network prior to predictions.

Mutual Followers Count Measures the overlap of the follower sets (i.e. the
set of users connecting into a given user) between u and v. Let Γ−(u) denote
the set of followers connected to u and Γ−(v) denote the set of users following
v, then we define the mutual follower count as:

MFR(u, v) = |Γ−(u) ∩ Γ−(v)| (1)

9 We use the symbols u and v hereafter to denote the user and a recommended user
respectively.



Mutual Followees Count Measures the overlap of the followee sets (i.e. the
set of users to whom a given user is connected) between u and v. Let Γ+(u)
denote the set of followers connected to u and Γ+(v)10 denote the set of users
following v, then we define the mutual follower count as:

MFE(u, v) = |Γ+(u) ∩ Γ+(v)| (2)

Mutual Friends Count Measures the overlap of the friends sets (i.e. the set of
users with whom a user is friends, where friendship is denoted by a bi-directional
edge between nodes) between u and v. The friend set is derived by taking the
intersection of the followee and follower set of a given user. Using this set def-
inition we can then calculate the mutual friends count as the overlap between
friend sets between two users, or formally as:

MF (u, v) = |(Γ−(u) ∩ Γ+(u)) ∩ (Γ−(v) ∩ Γ+(v))| (3)

Mutual Neighbours Measures the overlap of the ego-centric networks of u
and v whilst ignoring the directions of the links in the networks - this measure
is taken from [12, 10, 1]. This feature is included to assess the impact, or lack
of, that direction has on link creation - i.e. following or followed. We define this
measure formally as:

MN(u, v) = |(Γ−(u) ∪ Γ+(u)) ∩ (Γ−(v) ∪ Γ+(v))| (4)

4.2 Topical

For certain users the decision to follow a user may be based on the content
that the other user shares and produces. This effect is symptomatic of attention-
information networks [5] in which the level of attention that a user can pay to
content published by their network members is limited. To explore the effects of
topical information on follower decisions we explore the overlap between users
in terms of keywords (tags) and concepts. In the following section we describe
a method to align a keyword to a concept given a user’s context. Given such
concepts we can explore the relation between users in terms of their seman-
tic distance from one another within a concept graph, the intuition being that
the further away two users are, then the less similar they are in terms of their
interests, allowing the effect of homophily to be explored. We define several con-
ventions as follows: let Tu be the set of keywords (or tags) found within the
content of user u and CTu be the bag of concepts attributed to the tags from Tu.

Tag Vectors - Cosine Similarity Our first feature is similar to the cosine sim-
ilarity between user tag vocabularies described in [9]. We define the tag vector
tu = {t1, t2, ..., tn} of a user u as being derived from the user’s tag set Tu using
a binary index of the appearance of a tag within a user’s content - i.e. t. = {0, 1}
10 We use the symbols − and + in the superscripts of the ego-centric networks to denote

the direction of the edges, the former denoting incoming and the latter denoting
outgoing.



in tu. To compute the similarity between the tag vectors of u and v denoted by
tu and tv respectively we take the cosine of the angle between these vectors.

Concept Bags The concept bag CTu of a given user u is derived by returning
the set of concepts that each tag in Tu has been associated with. As we have a
collection of tags it is likely that duplicate concepts will be returned for differ-
ent tags, we maintain these duplicates in the concept bag of a user and form a
concept bag vector : cu = {c1, c2, ..., cn} using the frequency of the concepts in
the bag as the weights - i.e. c. = {0} ∪N+ in cu.

Cosine Similarity Given two concept bag vectors cu and cv for two different
users u and v respectively, we measure the cosine of the angle between those
vectors as the first measure between concept bags.

Jensen-Shannon Divergence Given two concept bag vectors cu and cv for two
different users we model each vector as a probability distribution over the total
set of concepts denoted as Pu and Pv respectively - using frequency counts for
keyword usages to derive the probability distributions. Using these distributions
over the total set of concepts we then measure the Jensen-Shannon Divergence
between the concept bags, thereby gauging the level of dissimilarity between the
concepts attributed to the content of u and v:

DJS =
1

2

∑
i

Pu(i) log
Pu(i)

Pv(i)
+

1

2

∑
i

Pv(i) log
Pv(i)

Pu(i)
(5)

Concept Graphs By using concept graphs we can explore the semantic relat-
edness of users using graph-based distance metrics. To enable this comparison
we require a one-to-one mapping between a tag and a concept given a user. This
produces a set of concepts for each user that can be used for comparison with
other users. In the following section we explain how we perform concept disam-
biguation using a user’s context to overcome the polysemy problem - i.e. where
a single tag can have multiple concepts. We define 〈t, c〉 ∈ Mu as an injective
map between the tags from the tag set Tu of user u and the set of concepts from
the concept bag CTu

of user u where a concept aligned to a tag given a user
is returned by Mu[t] = c. Through this we can perform a pairwise comparison
of the distances between concepts attributed to the tags of u and v using the
function: d(ci, cj). We define three distance measures over concept graphs - these
distance measures are explained shortly - each of which have two varieties:

1. Tag Intersection The first variety uses the intersection of the tag sets of u and
v for comparison: Tu∩Tv = Tuv. For each tag in t ∈ Tuv we produce the tag-
concept maps given each user such that |Mu| ≡ |Mv|. The distances between
the concepts from equivalent tags in Tuv are measured using a distance metric
and the average taken. We define this formally as:

INT (Tuv) =
1

|Tuv|

|Tuv|∑
i

d(Mu[ti],Mv[ti]) (6)



2. All Tags The second variety performs a pairwise distance comparison be-
tween the tag sets of u and v through the concepts that each tag within
those sets has been mapped to. For each tag in a given user’s tag set Tu we
produce an injective map: Mu. However, unlike the tag intersection the car-
dinality of the map for one user will differ from another if the cardinality of
their tag sets differs. Using the maps we then measure the distance between
every mapped concept in the different sets. We define this formally as:

ALL(Tu, Tv) =
1

|Tu|
1

|Tv|

|Tu∑
i

|Tv|∑
j

d(Mu[ti],Mv[tj ]) (7)

Based on these two varieties we explore three distance metrics for measuring
d(ci, cj) in the concept graph:

Shortest Path The first metric derives the shortest path between ci and cj using
the Bellman-Ford algorithm. This method performs a breadth first search of a
graph-space until a desired node is found.

Hitting Time The second and third metrics utilise the Markov-chain random
walks model in which the probability of a random walker moving from one node
to another in one time step is only dependent on their current position in a
graph. The graph over which the random walker will traverse is the concept graph
Gconc which is composed of nodes (concepts) Vconc and edges that connect those
concepts 〈i, j〉 ∈ Econc - where edges are undirected and therefore hypernym
and hyponym relations are ignored for now. We define the random walks model
using the Laplacian matrix of the concept graph: L = D − A and define the
adjacency matrix A for entry aij to be 1 if 〈i, j〉 ∈ Econc and 0 otherwise.

The diagonal degree matrix is defined as the row sum of the adjacency matrix:
dii =

∑
j aij . We then take the Moore-Penrose pseudoinverse of the laplacian

matrix which we denote as L+. This provides, based on work by Fouss et al. [4],
the necessary information to efficiently derive the hitting time m(j|i) of a random
walker as it traverses the concept graph Gconc, this is computed as follows:

m(j|i) =

|Vconc|∑
k

(l+ij − l
+
ik − l

+
jk + l+kk)dii (8)

Commute Time Distance The third distance metric computes the average num-
ber of steps the walker takes to leave a given node i reach another node j and
then return back to i. The closer that two nodes are in the concept graph Gconc
then the shorter the commute time. As the hitting time distances are not sym-
metric - i.e. m(j|i) 6= m(i|j) - we define the commute time distance from i to j
as: n(j|i) = m(j|i) +m(i|j).

4.3 Visibility

The presence and access to information published by a prospective followee could
influence users in deciding whether to follow the individual or not. However, lim-
itations imposed on attention-information networks means that the dominant,



but not solitary, method through which posts by individuals outside of a user’s
followee network are seen is if they are retweeted or if a followee mentions a user.
To explore these effects we devised the following six features:

Retweet Count The total number of times a given user (v) has been retweeted
by members of the followee network belonging to u (w ∈ Γ+(u)), we define this
as follows, using the retweet(w, v) function to return the number of times w
retweeted v:

RC(u, v) =
∑

w∈Γ+(u)

retweet(w, v) (9)

Mention Count The total number of times a given user (v) has been mentioned
by members of the followee network belonging to u (w ∈ Γ+(u)), we define this
as follows, using the mention(w, v) function to return the number of times w
mentioned v:

MC(u, v) =
∑

w∈Γ+(u)

mention(w, v) (10)

Comment Count The total number of times a given user (v) has had his/her
content commented on by members of the followee network belonging to u (w ∈
Γ+(u)), we define this as follows, using the comment(w, v) function to return
the number of times w commented on content published by v:

CC(u, v) =
∑

w∈Γ+(u)

comment(w, v) (11)

Weighted Retweet Count The retweet count gauges the number of times a
user v has been retweeted by members of the followee network Γ+(u) of u. The
influence that members of this followee network exhibit may differ depending on
the attention that u pays to each person. To assess this effect we set δw to be
the number of times u has replied to w ∈ Γ+(u). We then derive a normalised
influence weight λw for w ∈ Γ+(u) such that

∑
w∈Γ+(u) λw = 1, where λw =

δw/
∑
w.∈Γ+(u) δw. . Given this influence weighting scheme we then measure the

weighted retweet count such that the neighbours of u assert different effects on
the count:

WRC(u, v) =
∑

w∈Γ+(u)

λw.retweet(w, v) (12)

Weighted Mention Count As above, with the weighted retweet count, we also
adjust the mention count of v by members of the followee network of u based on
attention:

WMC(u, v) =
∑

w∈Γ+(u)

λw.mention(w, v) (13)

Weighted Comment Count The comment count is also adjusted based on
the attention paid by u to his followee network members:

WCC(u, v) =
∑

w∈Γ+(u)

λw.comment(w, v) (14)



5 Concept Disambiguation with User Contexts

Measuring the distances between concepts within a graph space provides a no-
tion of semantic relatedness that can, in turn, be used to cumulatively gauge
the topical similarity between two users. As we mentioned above, distances are
measured using three different metrics, however each metric requires an injective
map between a set of tags and the concepts that they refer to. In this context
we encounter the problem of concept ambiguity, also known as polysemy, where
a single tag can have multiples concepts mapped to it.11 Our earlier assessment
of the distribution of categories per tags, as shown in Figure 1(a), demonstrates
the large extent to which polysemy is evident within the dataset.

Cantador et al. [3] proposed ‘distributional aggregation’ as a method for
choosing the most representative tag for a web resource based on usage frequency
amongst a collection of users. Our approach performs concept disambiguation
by leveraging the context of the user, thereby swapping the collection of users
for the concept bag of a given user and exploiting that as a voting mechanism.
To illustrate this better consider a scenario in which the tag sets Tu and Tv and
concept bags CTu and CTv are returned for for u and v. For each tag in the
tag set we derive the list of candidates Ccand,t for that tag (t) from the concept
graph. For instance for a tag t1 we may have two candidates in the candidate
set: {c1, c2} ∈ Ccand,t1. We count how many times each candidate appears in the
concept bag of the user CTu

and choose the most frequent, this then forms the
mapping for the tag: e.g. Mu[t1] = c1. We define this process using the following
function:

CD(Ccand,t, CTu) = arg max
c
|{c : c ∈ Ccand,t; c ∈ CTu}| (15)

6 Experiments

In the introduction of this paper we stated three hypotheses that describe the
follower-decision behaviour of members of attention-information networks. The
aforementioned features are engineered to capture the social, topical and visi-
bility factors that could lead to follower decisions. In this section we describe
experiments to verify our hypotheses tested over the KDD Cup 2012 dataset.

6.1 Experimental Setup

Our task, given that we are inducing a link function (f : V × R → {0, 1}), is a
binary classification one. In essence we are asking will user u follow user v? To
test our hypotheses we performed two experiments: General Follower Prediction
and Binned Follower Prediction. For each experiment we first performed model
selection by inducing a logistic regression model using only social, topical or
visibility features and then all features combined together, we then selected the
best model by the one that maximised the Area Under the ROC Curve (AUC).

11 This is analogous to a word having multiple senses on Wordnet or the same tag
appearing in multiple fixed taxonomical categories.



Second we assessed the coefficients in the logistic regression model trained on all
features to identify patterns between an increase in a feature and the log-odds
of the classifier increasing, and therefore the likelihood of a follower decision also
increasing. The experiments were setup as follows:

General Follower Prediction Our first experiment sought a general follower
prediction model in order to observe differences, at a general level, in follower
behaviour. We randomly selected 10% of users from the dataset and generated
a machine learning dataset for each user by building feature vectors xv that
contained the social, topical and visibility features (19 features in total) com-
puted in a pairwise fashion between u and each recommended user v ∈ R(u),
setting the class label to pos if u followed v or neg otherwise. We combined the
user-specific datasets together into one large dataset and balanced the data such
that there were an equal number of positive and negative examples. The dataset,
following balancing and a further randomisation process to ensure mixing, was
then divided into an 80:20% split for training and testing, containing 457,722
instances in total.

Binned Follower Prediction We performed two experiments in this context.
To begin with we measured two metrics for each user:

1. Concept-bag Entropy: We took the concept bag of each user derived from
their tag set and measured the entropy of that concept bag, thereby captur-
ing the dispersion of concepts that the user could be talking about. In this
context low entropy denotes a focussed user while high entropy denotes
an unfocussed user who is more random in the subjects that he publishes.
We define this measure as follows, where p(cj) is the conditional probability
of the concept (cj) within the user’s concept bag (CTu):

HCTu
= −

|CTu |∑
j=1

p(cj) log p(cj) (16)

2. Degree Distribution: We measure this as the proportion of users on the plat-
form the user follows, thereby gauging how connected a user is. To derive
this measure we took the out-degree of each user (|Γ+(v)|) and divided this
by the total number of users (|V |).

For each measure we divided the users up into 10 equal-frequency bins such
that the same number of users were placed within each bin and selected all the
users from the low and high bins. By choosing 10 bins and then selecting the
low and high users for each of the above measures we are provided with users
who will differ greatly in these properties. Following this binning process we
built the datasets for each binned user using the same process as above (i.e.
building pairwise feature vectors for each user u and each of his recommended
users v ∈ R(u)) and then combined the user-specific datasets together, thereby
producing four datasets for the experiment: two for the Concept-bag Entropy
(low with 268,818 and high with 325,508 instances) and two for the Degree Dis-
tribution (low with 400,866 and high with 610,098 instances). We balanced each



dataset such that there were the same number of positive and negative instances
and then divided each dataset up into a training/testing sets using an 80:20 split.

Evaluation Measures To assess the accuracy of the trained logistic regression
models we measured the area under the Receiver Operator Characteristic Curve
(AUC).12 We use this measure to choose a model that predicts links accurately
and minimises the number of false predictions. We also computed the Matthews
correlation coefficient (MCC) to compare our models against a random predictor
baseline: a coefficient of +1 is a perfect prediction, 0 is equal to random and −1
is total disagreement between prediction and observation.

6.2 Results: Prediction Accuracy

We begin our analysis of the prediction models by assessing the accuracy levels
achieved in each experiment, as shown in Figure 2. Starting with the full model
and assessing the feature sets used in isolation the results indicate that topical
factors achieve the best performance and provide the most useful information
for predicting links between users - performing significantly better (t-test with
α < 0.001) than social and visibility features. Within the introduction of this
paper we hypothesised that ‘Following a user is performed when there is a topical
affinity between the follower and the followee’, the findings from our assessments
of feature sets used in isolation confirms this hypothesis, however combining all
the features together achieves the best performance. To provide an indication
of the difference between the performance of the model and the baseline we ran
the sign test of the MCC values and found each feature set combination to
significantly outperform the random model.

Inspecting the AUC values produced for the Concept-bag Entropy models
we find different patterns. For the low entropy users the topical factors perform
best of the isolated feature sets, in a similar manner to the full model, while for
the high entropy users the social features achieve the best performance of the
isolated sets - significantly better than the other models (t-test with α < 0.001).
This finding confirms our earlier hypothesis that ‘Users who do not focus on
specific topics do not base their follower decisions on topical information but
on social factors’. Our intuition was that the more random a user is in his
discussions then the less likely it would be for that user to base his follower-
decisions on topical information. Instead, the driver in making such a decision
is more likely to be social, as the user is more inclined to spread the topics and
subjects he discusses in order to engage with more people.

Turning now to the Degree Distribution models we also find similar results
to the full model by achieving the highest AUC values when using the topical
features. Interestingly, we hypothesised earlier that ‘Users who are more socially
connected are driven by social rather than topical factors’, yet Figure 2 indicates
that topical features outperform social features, thereby rejecting our earlier
hypothesis - the former features were found to be significantly better (t-test with

12 This accuracy measure is used throughout link prediction literature [12, 9, 6]



α < 0.01). It could be the case that users who have a high out-degree form topic
specific communities, assessing the coefficients of the logistic regression model
for these high degree users should confirm this. We find that for all the models
visibility features have little effect on predictions as only a small minority are
non-zero - i.e. Retweet Count: µ = 13× 10−5.
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Fig. 2. Follower Prediction Model Results using the Full model and the Binned models.
We report the Area under the ROC curve (AUC) and the Matthews Correlation Co-
efficient in parentheses, significantly outperforming the random baseline for all models
bar visibility features.

6.3 Results: Follower-Decision Patterns

We now study the patterns of the logistic regression models in greater detail
to compare the effects of various features on the log-odds ratio of the classifier
and the probability of a user creating a link in their followee network. Starting
again with the full model, and assessing the coefficients in Table 1,13 we find that
connections are formed between two users when there are fewer mutual followers,
but more mutual neighbours - so they share some social affinity through their
neighbours. Topically, users follow other users who are closer to them in terms of
the subjects they discuss characterised by the reduced JS-divergence and greater
cosine similarity across the tags and concepts, and also the reduced shortest path
and hitting between all concepts of the users.

In terms of the binned models: low entropy users follow other users with
whom they share less mutual followers but more mutual neighbours. These users
should also have a greater topical affinity, given the negative coefficients for JS-
divergence and the shortest path and hitting time across all concepts, and the
positive coefficients for the tag vector and concept bag cosines. While high en-
tropy users (who cover a lot of different topics in their discussions) follow other
users with whom they share more mutual followers but less mutual friends. We
also observe an interesting behaviour pattern for these user types as the tag
vector cosine between a user and his followee should be minimised - indicating
the requirement for a reduced overlap in the keywords that both users publish
- however the concept vector cosine should be increased and the JS-divergence
and hitting time should be reduced. As these latter features cover concept infor-
mation, abstracted from tags published by either user, this suggests the presence
of topical affinity between users without either user talking about the same tags.

13 We only comment on features whose inclusion in the model is significant.



Table 1. Follower Prediction Model Coefficients for the General model (full) and the
Binned models (Concept-bag Entropy and Degree Distribution).

Full Concept-bag Entropy Degree Distribution
Set Feature Low High Low High
Social Mutual Followers Count -0.0275*** -0.0497*** 0.2985*** 8.6776 -0.0062**

Mutual Followees Count 0.0001 -0.0064 0.1440*** - 0.0066***
Mutual Friends Count -0.0236 -0.1357 -0.2786*** - 0.0041
Mutual Neighbours Count 0.0289*** 0.0462*** -0.3033*** - 0.0023.

Topical Tag Vectors - Cosine 0.7887*** 0.5793** -0.5125*** 0.8628*** 0.4840**
Conc Bags - Cosine 0.6277*** 0.9587*** 1.6519*** 0.5624*** 0.5779***
Conc Bags - JS-Divergence -0.0410*** -0.0421** -0.6369*** -0.0425*** -0.0059
Conc Graphs - Int - Short Path 0.0329. 0.0811*** 0.1324*** 0.0556* 0.0795***
Conc Graphs - All - Short Path -0.0659*** -0.0444*** 0.1515*** -0.0516*** -0.1230***
Conc Graphs - Int - Hit Time 0.0009*** -0.0001 -0.0003** -0.0002 -0.0002
Conc Graphs - All - Hit Time -0.0007*** -0.0006*** -0.0001. -0.0005*** -0.0004***
Conc Graphs - Int - Com Time -0.0005*** 0 0.0001 0.0001 0
Conc Graphs - All - Com Time 0.0004*** 0.0003*** 0 0.0003*** 0.0003***

Visibility Retweet Count 4.3102 8.2279 6.9181 - 0.4570
Mention Count -12.5017 - - - -2.4563
Comment Count -8.4571 - - - -2.1373
Weighted Retweet Count - - - - -
Weighted Mention Count - - - - -
Weighted Comment Count -20.2386 -381.3810 -1401.6106 - -1.1584

Signif. codes: p-value < 0.001 *** 0.01 ** 0.05 * 0.1 . 1

For low degree users we find that largely topical features appear within the
model - as these users are not connected to many people and therefore the
appearance of social factors is diminished. For these users the coefficients indicate
a similar pattern for low entropy users where a user follows a recommended user if
they share topical affinity - i.e. high cosine similarity based on tags and concepts,
and lower hitting time and JS-divergence. High degree users follow other users
with whom they share fewer mutual followers but more mutual followees - i.e.
both users need to follow many of the same people. For topical features the
high degree users follow other users with whom they share a topical affinity,
indicating that although these users subscribe to many users they are based on
common subjects and interest. We also find similar topical effects to both the full
model and the low entropy/degree models: high similarity between the follower
and followee based on tag vector/concept bag cosine, and low JS-divergence and
hitting times.

7 Discussion

Analysing the follower-decision behaviour of users in an example microblogging
platform proved two of our three earlier stated hypotheses. We also uncovered
a general behaviour pattern based on the topical affinity between a follower and
followee where the concept distance between the users should be lowered - mea-
sured using the random walks hitting time and tag similarity. Such findings are
consistent with work by Schifanella et al. [9] where users who were socially close
to one another were found to have a high topical affinity (cosine of tag vocabu-
laries). Our work attempts to advance such findings by exploring novel metrics
for assessing topical affinity, using concept graphs, and inspecting the coefficients



in induced logistic regression models to unearth the latent behavioural pattern.
Such an examination has never been undertaken before.

In comparison with existing work we found different follower-decision be-
haviours. For instance, Golder et al. [5] found that on Twitter common followers,
when increased in number, boosted the likelihood of a link being formed. This
was also reported in Brzozowski and Romero [2] where sharing a mutual audi-
ence was correlated with better link prediction. However we do not see this effect
in our general model and only see the increase in mutual followers as increasing
the likelihood of a user following another in the high entropy model. In fact for
the remaining models, the number of mutual followers should actually be re-
duced, thereby conflicting with both Golder et al. and Brzozowski and Romero’s
findings. Leroy et al. [6] found that an increase in mutual neighbours between
a follower and followee was correlated with edge creation. We also observe a
similar effect in our models where for all models, aside from the high entropy
users, an increase in the number of mutual neighbours was associated with an
increase in link creation likelihood. This divergent behaviour for high entropy
users is common across many of the implemented features and suggests the need
for model adaptation when considering these user types. Despite such divergent
behaviour we note that a consistent topical affinity effect exists, as conceptually
- i.e. considering concepts abstracted from published keywords - we find topical
affinity between such random users and their followees.

8 Conclusions and Future Work

In this paper we have presented an approach to predict links on attention-
information networks and in doing so: a) significantly out-performed a random
model baseline when using all implemented features in a logistic regression model
and existing topological models when using topical information; b) learnt a gen-
eral pattern that captures the follower-behaviour of users of an example mi-
croblogging platform; and c) uncovered latent factors that lead to link creation
including clear topical affinity between followers and followees. These findings
allow followee recommendations to be improved based on the behaviour of the
recipient, and therefore grow the network on the platform and increase social
capital. A necessary next step for this work is to apply our models over data
from other attention-information networks such as Twitter and YouTube in or-
der examine the behaviour of their users and whether the findings from this
work corroborate with those from disparate platforms. Assuming that concepts
resolvable to Linked Data URIs can be extracted from textual content available
in those networks, this would allow our concept-based affinity measures to be
applied over Linked Data.

Future work will also involve assessing the correlation between social network
distances between users and their topical affinity. Schifanella et al. [9] found
when one compares users who are more than 2 steps away in a social network
then the topical affinity between users declines rapidly. We plan to combine this
examination with applying our approach over Twitter and YouTube. We are



also exploring the use of Conditional Random Fields on link prediction, thereby
allowing follower-decisions to be conditioned on recent user behaviour - i.e. a
user’s recent propensity to follow other users. We conjecture that performance
is conditioned on time-sensitive behaviour of each user. We do not capture this
at present.
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