
An Efficient Bit Vector Approach to Semantics-based

Machine Perception in Resource-Constrained Devices

Cory Henson, Krishnaprasad Thirunarayan, Amit Sheth

Ohio Center of Excellence in Knowledge-enabled Computing (Kno.e.sis)

Wright State University, Dayton, Ohio, USA

{cory, tkprasad, amit}@knoesis.org

Abstract. The primary challenge of machine perception is to define efficient

computational methods to derive high-level knowledge from low-level sensor

observation data. Emerging solutions are using ontologies for expressive

representation of concepts in the domain of sensing and perception, which

enable advanced integration and interpretation of heterogeneous sensor data.

The computational complexity of OWL, however, seriously limits its

applicability and use within resource-constrained environments, such as mobile

devices. To overcome this issue, we employ OWL to formally define the

inference tasks needed for machine perception – explanation and

discrimination – and then provide efficient algorithms for these tasks, using

bit-vector encodings and operations. The applicability of our approach to

machine perception is evaluated on a smart-phone mobile device,

demonstrating dramatic improvements in both efficiency and scale.

Keywords: Machine Perception, Semantic Sensor Web, Sensor Data, Mobile

Device, Resource-Constrained Environments

1 Introduction

In recent years, we have seen dramatic advances and adoption of sensor technologies

to monitor all aspects of our environment; and increasingly, these sensors are

embedded within mobile devices. There are currently over 4 billion mobile devices in

operation around the world; and an estimated 25% (and growing) of those are smart

devices1. Many of these devices are equipped with sensors, such as cameras, GPS,

RFID, and accelerometers. Other types of external sensors are also directly accessible

to mobile devices through either physical attachments or wireless communication

protocols, such as Bluetooth. Mobile applications that may utilize this sensor data for

deriving context and/or situation awareness abound. Consider a mobile device that’s

capable of communicating with on-body sensors measuring body temperature, heart

rate, blood pressure, and galvanic-skin response. The data generated by these sensors

may be analyzed to determine a person’s health condition and recommend

subsequent action. The value of such applications such as these is obvious, yet

difficult challenges remain.

1 http://www.digitalbuzzblog.com/2011-mobile-statistics-stats-facts-marketing-infographic/

http://www.digitalbuzzblog.com/2011-mobile-statistics-stats-facts-marketing-infographic/

The act of observation performed by heterogeneous sensors creates an avalanche

of data that must be integrated and interpreted in order to provide knowledge of the

situation. This process is commonly referred to as perception, and while people have

evolved sophisticated mechanisms to efficiently perceive their environment – such as

the use of a-priori knowledge of the environment [1-2] – machines continue to

struggle with the task. The primary challenge of machine perception is to define

efficient computational methods to derive high-level knowledge from low-level sensor

observation data. From the scenario above, the high-level knowledge of a person’s

health condition is derived from low-level observation data from on-body sensors.

Emerging solutions to the challenge of machine perception are using ontologies

to provide expressive representation of concepts in the domain of sensing and

perception, which enable advanced integration and interpretation of heterogeneous

sensor data. The W3C Semantic Sensor Network Incubator Group [3] has recently

developed the Semantic Sensor Network (SSN) ontology [4-5] that enables

expressive representation of sensors, sensor observations, and knowledge of the

environment. The SSN ontology is encoded in the Web Ontology Language (OWL)

and has begun to achieve broad adoption within the sensors community [6-8]. Such

work is leading to a realization of a Semantic Sensor Web [9].

OWL provides an ideal solution for defining an expressive representation and

formal semantics of concepts in a domain. As such, the SSN ontology serves as a

foundation for our work in defining the semantics of machine perception. And given

the ubiquity of mobile devices and the proliferation of sensors capable of

communicating with them, mobile devices serve as an appropriate platform for

executing machine perception. Despite the popularity of cloud-based solutions, many

applications may still require local processing, e.g., for privacy concerns, or the need

for independence from network connectivity in critical healthcare applications. The

computational complexity of OWL, however, seriously limits its applicability and use

within resource-constrained environments, such as mobile devices [10].

To overcome this issue, we develop encodings and algorithms for the efficient

execution of the inference tasks needed for machine perception: explanation and

discrimination. Explanation is the task of accounting for sensory observations; often

referred to as hypothesis building [2,11]. Discrimination is the task of deciding how

to narrow down the multitude of explanations through further observation [1,2]. The

efficient algorithms devised for explanation and discrimination use bit vector

operations, leveraging environmental knowledge encoded within a two-dimensional

bit matrix.

To preserve the ability to share and integrate with knowledge on the Web, lifting

and lowering mappings between the semantic representations and the bit vector

representations are provided. Using these mappings, knowledge of the environment

encoded in RDF (and shared on the Web, i.e., as Linked Data) may be utilized by

lowering the knowledge to a bit matrix representation. On the other hand, knowledge

derived by the bit vector algorithms may be shared on the Web (i.e., as Linked Data),

by lifting to an RDF representation.

The applicability of our approach to machine perception is evaluated on a smart-

phone mobile device, demonstrating dramatic improvements in both efficiency and

scale. In this paper, we present three novel contributions towards efficient machine

perception in resource-constrained environments:

1. Formal definition of two primary inference tasks, in OWL, that are generally

applicable to machine perception – explanation and discrimination.

2. Efficient algorithms for these inference tasks, using bit vector operations.

3. Lifting and lowering mappings to enable the translation of knowledge between

the high-level semantic representations and low-level bit-vector representations.

Section 2 discusses the application of the SSN ontology for representing sensor

observations and a-priori environmental knowledge. Section 3 specifies explanation

and discrimination, as an extension to the SSN ontology. The efficient bit vector

algorithms, as well as the lifting and lowering mappings, are provided in Section 4.

Our approach is evaluated in Section 5, followed by related work in Section 6, and

conclusions in Section 7.

2 Semantic Sensor Network Ontology

The Semantic Sensor Network (SSN) ontology [4-5] was developed by the W3C

Semantic Sensor Network Incubator Group [3] to serve the needs of the sensors

community. This community is currently using it for improved management of

sensor data on the Web, involving annotation, integration, publishing, and search [6-

8]. The ontology defines concepts for representing sensors, sensor observations, and

knowledge of the environment.

The SSN ontology serves as a foundation to formalize the semantics of perception.

In particular, the representation of observations and environmental knowledge are

employed. An observation (ssn:Observation) is defined as a situation that

describes an observed feature, an observed property, the sensor used, and a value

resulting from the observation (note: prefix ssn is used to denote concepts from the

SSN ontology). A feature (ssn:FeatureOfInterest; for conciseness,

ssn:Feature will be used throughout the paper) is an object or event in an

environment, and a property (ssn:Property) is an observable attribute of a feature.

For example, in cardiology, elevated blood pressure is a property of the feature

Hyperthyroidism. To determine that blood pressure is elevated requires some pre-

processing; however, this is outside the scope of this work. An observation is related

to its observed property through the ssn:observedProperty relation.

Knowledge of the environment plays a key role in perception [1-2]. Therefore, the

ability to leverage shared knowledge is a key enabler of semantics-based machine

perception. In SSN, knowledge of the environment is represented as a relation

(ssn:isPropertyOf) between a property and a feature. To enable integration with

other ontological knowledge on the Web, this environmental knowledge design

pattern is aligned with concepts in the DOLCE Ultra Lite ontology2. Figure 1a

provides a graphical representation of environmental knowledge in SSN, with

mappings to DOLCE. An environmental knowledgebase, storing facts about many

features and their observable properties, takes the shape of a bipartite graph.

(Throughout the paper, KB will be used to refer to environmental knowledgebase).

Figure 1b shows an example KB with concepts from cardiology.

2 http://www.loa-cnr.it/ontologies/DUL.owl

http://www.loa-cnr.it/ontologies/DUL.owl

Figure 1. (a) Graphical representation of environmental knowledge in the SSN ontology, with

mappings to DOLCE Ultra Lite (prefix dul). (b) Graphical representation of an example

environmental knowledgebase in cardiology, taking the shape of a bipartite graph. This

knowledgebase is derived from collaboration with cardiologists at ezDI (http://www.ezdi.us/).

3 Semantics of Machine Perception

Perception is the act of deriving high-level knowledge from low-level sensory

observations [11]. The challenge of machine perception is to define computational

methods to achieve this task efficiently. Towards the goal of providing a formal

semantics of machine perception, we will define the primary components (inference

tasks) of perception in OWL, as an extension of the SSN ontology. The two main

components of perception are explanation and discrimination.

3.1 Semantics of Explanation

Explanation is the act of accounting for sensory observations; often referred to as

hypothesis building [2,11]. More specifically, explanation takes a set of observed

properties as input and yields the set of features that explain the observed properties.

A feature is said to explain an observed property if the property is related to the

feature through an ssn:isPropertyOf relation. A feature is said to explain a set of

observed properties if the feature explains each property in the set. Example: Given

the KB in Figure 1b, Hyperthyroidism explains the observed properties elevated

blood pressure, clammy skin, and palpitations.

Explanation is used to derive knowledge of the features in an environment from

observation of their properties. Since several features may be capable of explaining a

given set of observed properties, explanation is most accurately defined as an

abductive process (i.e., inference to the best explanation) [11]. Example: the

observed properties, elevated blood pressure and palpitations, are explained by the

features Hypertension and Hyperthyroidism (discussed further below). While OWL

has not been specifically designed for abductive inference, we will demonstrate that

it does provide some of the expressivity needed to derive explanations.

The formalization of explanation in OWL consists of two steps: (1) derive the set

of observed properties from a set of observations, and (2) utilize the set of observed

properties to derive a set of explanatory features.

http://www.ezdi.us/

ObservedProperty: An observed property is a property that has been observed. Note

that observations of a property, such as elevated blood pressure, also contain

information about the spatiotemporal context, measured value, unit of measure, etc.,

so the observed properties need to be “extracted” from the observations. To derive

the set of observed properties (instances), first create a class ObservedProperty.

For each observation o in ssn:Observation create an existentially quantified

property restriction for the ssn:observedProperty— relation, and disjoin them as

follows (note: x— represents the inverse of relation x):

DEF 1: ObservedProperty ≡ ∃ssn:observedProperty—
.{o1} ⊔ … ⊔

∃ssn:observedProperty—
.{on}

ExplanatoryFeature: An explanatory feature is a feature that explains the set of

observed properties. To derive the set of explanatory features, create a class

ExplantoryFeature, and for each observed property p in ObservedProperty

create an existentially quantified property restriction for the ssn:isPropertyOf
—

relation, and conjoin them as follows:

DEF 2: ExplanatoryFeature ≡ ∃ssn:isPropertyOf—
.{p1} ⊓ … ⊓

∃ssn:isPropertyOf—
.{pn}

To derive the set of all explanatory features, construct the ObservedProperty

class and execute the query ObservedProperty(?x) with an OWL reasoner. Then,

construct the ExplanatoryFeature class and execute the query

ExplanatoryFeature(?y).

Example: Assume the properties elevated blood pressure and palpitations have been

observed, and encoded in RDF (conformant with SSN):

ssn:Observation(o1), ssn:observedProperty(o1, elevated blood pressure)

ssn:Observation(o2), ssn:observedProperty(o2, palpitations)

Given these observations, the following ExplanatoryFeature class is constructed:

ExplanatoryFeature ≡ ∃ssn:isPropertyOf—
.{elevated blood pressure} ⊓

∃ssn:isPropertyOf—
.{palpitations}

Given the KB in Figure 1b, executing the query ExplanatoryFeature(?y) can

infer the features, Hypertension and Hyperthyroidism, as explanations:

ExplanatoryFeature(Hypertension)

ExplanatoryFeature(Hyperthyroidism)

This encoding of explanation in OWL (see DEF 2) provides an accurate

simulation of abductive reasoning in the Parsimonious Covering Theory [12], with

the single-feature assumption3 [13-14]. The Description Logic expressivity of the

explanation task is ALCOI4,5, with ExpTime-complete complexity [15].

3 Single-feature assumption specifies that an explanatory feature is a single individual.
4 Using DL constructs: ⊓, ⊔, ∃, {a}, R—
5 http://www.cs.man.ac.uk/~ezolin/dl/

http://www.cs.man.ac.uk/~ezolin/dl/

3.2 Semantics of Discrimination

Discrimination is the act of deciding how to narrow down the multitude of

explanatory features through further observation. The innate human ability to focus

attention on aspects of the environment that are essential for effective situation-

awareness stems from the act of discrimination [1,2,16]. Discrimination takes a set of

features as input and yields a set of properties. A property is said to discriminate

between a set of features if its presence can reduce the set of explanatory features.

Example: Given the KB in Figure 1b, the property clammy skin discriminates

between the features, Hypertension and Hyperthyroidism (discussed further below).

The ability to identify discriminating properties can significantly improve the

efficiency of machine perception [17]. Such knowledge can then be used to task

sensors capable of observing those properties.

To formalize discrimination in OWL, we will define three types of properties:

expected property, not-applicable property, and discriminating property.

ExpectedProperty: A property is expected with respect to (w.r.t.) a set of features if

it is a property of every feature in the set. Thus, if it were to be observed, every

feature in the set would explain the observed property. Example: the property

elevated blood pressure is expected w.r.t. the features, Hypertension,

Hyperthyroidism, and Pulmonary Edema. To derive the set of expected properties,

create a class ExpectedProperty, and for each explanatory feature f in

ExplanatoryFeature, create an existentially quantified property restriction for the

ssn:isPropertyOf relation, and conjoin them as follows:

DEF 3: ExpectedProperty ≡ ∃ssn:isPropertyOf.{f1} ⊓ … ⊓

∃ssn:isPropertyOf.{fn}

NotApplicableProperty: A property is not-applicable w.r.t. a set of features if it is

not a property of any feature in the set. Thus, if it were to be observed, no feature in

the set would explain the observed property. Example: the property clammy skin is

not-applicable w.r.t. the features, Hypertension and Pulmonary Edema. To derive the

set of not-applicable properties, create a class NotApplicableProperty, and for

each explanatory feature f in ExplanatoryFeature, create a negated existentially

quantified property restriction for the ssn:isPropertyOf relation, and conjoin

them as follows:

DEF 4: NotApplicableProperty ≡ ¬∃ssn:isPropertyOf.{f1} ⊓ … ⊓

¬∃ssn:isPropertyOf.{fn}

DiscriminatingProperty: A property is discriminating w.r.t. a set of features if it is

neither expected nor not-applicable. Observing a discriminating property would help

to reduce the number of explanatory features. Example: As stated above, the property

clammy skin is discriminating w.r.t. the features, Hypertension and Hyperthyroidism,

as it would be explained by Hyperthyroidism, but not by Hypertension. To derive the

set of discriminating properties, create a class, DiscriminatingProperty, which

is equivalent to the conjunction of the negated ExpectedProperty class and the

negated NotApplicableProperty class.

DEF 5: DiscriminatingProperty ≡ ¬ExpectedProperty ⊓
¬NotApplicableProperty

To derive the set of all discriminating properties, construct the

ExpectedProperty and NotApplicableProperty classes, and execute the query

DiscriminatingProperty(?x).

Example: Given the explanatory features from the previous example, Hypertension

and Hyperthyroidism (Section 3.1), the following classes are constructed:

ExpectedProperty ≡ ∃ssn:isPropertyOf.{Hypertension} ⊓
∃ssn:isPropertyOf.{Hyperthyroidism}

NotApplicableProperty ≡ ¬∃ssn:isPropertyOf.{Hypertension} ⊓
¬∃ssn:isPropertyOf.{Hyperthyroidism}

Given the KB in Figure 1b, executing the query DiscriminatingProperty(?x)

can infer the property clammy skin as discriminating:

DiscriminatingProperty(clammy skin)

To choose between Hypertension and Hyperthyroidism, task a sensor to measure

galvanic skin response (i.e., for clammy skin). The Description Logic expressivity of

the discrimination task is ALCO6, with PSpace-complete complexity [15].

4 Efficient Bit Vector Algorithms for Machine Perception

To enable their use on resource-constrained devices, we now describe algorithms for

efficient inference of explanation and discrimination. These algorithms use bit vector

encodings and operations, leveraging a-priori knowledge of the environment. Note

that this work does not support reasoning for all of OWL, but supports what is

needed for machine perception, which is useful in a variety of applications. Table 1

summarizes the data structures used by our algorithms.

Table 1. Quick summary of data structures used by the bit vector algorithms

(note: |x| represents the number of members of x).

Name Description About (type, size)

KBBM Environmental knowledge Bit matrix of size |ssn:Property| x |ssn:Feature|

OBSVBV Observed properties Bit vector of size |ssn:Property|

EXPLBV Explanatory features Bit vector of size |ssn:Feature|

DISCBV Discriminating properties Bit vector of size |ssn:Property|

4.1 Lifting and Lowering of Semantic Data

To preserve the ability to share and integrate with knowledge on the Web, lifting and

lowering mappings between the semantic representations and bit vector

6 using DL constructs: ⊓, ∃, {a}, ¬C

representations are provided. Using these

mappings, knowledge of the environment

encoded in RDF, as well as observed

properties encoded in RDF, may be

utilized by lowering them to a bit vector

representation. Knowledge derived by

the bit vector algorithms, including

observed properties, explanatory

features, and discriminating properties,

may be shared on the Web, by lifting

them to an RDF representation.

Environmental knowledge: An

environmental knowledgebase is

represented as a bit matrix KBBM, with

rows representing properties and columns

representing features. KBBM[i][j] is set to

1 (true) iff the property pi is a property of

feature fj. To lower an SSN KB encoded

in RDF: for all properties pi in

ssn:Property, create a corresponding

row in KBBM, and for all features fj in

ssn:Feature, create a corresponding

column. Set KBBM[i][j] to 1 iff there

exists a ssn:isPropertyOf(pi,fj)

relation. Figure 2a shows an example

KB, from Figure 1b, which has been lowered to a bit matrix representation. Index

tables are also created to map between the URI’s for concepts in the semantic

representation to their corresponding index positions in the bit vector representation.

Figures 2b and 2c show example index tables for properties and features.

Observed properties: Observed properties are represented as a bit vector OBSVBV,

where OBSVBV[i] is set to 1 iff property pi has been observed. To lower observed

properties encoded in RDF: for each property pi in ssn:Property, OBSVBV[i] is set

to 1 iff ObservedProperty(pi). To lift observed properties encoded in OBSVBV:

for each index position i in OBSVBV, assert ObservedProperty(pi) iff OBSVBV[i]

is set to 1. To generate a corresponding observation o, create an individual o of type

ssn:Observation, ssn:Observation(o), and assert

ssn:observedProperty(o,pi).

Explanatory features: Explanatory features are represented as a bit vector EXPLBV.

EXPLBV[j] is set to 1 iff the feature fj explains the set of observed properties

represented in OBSVBV (that is, it explains all properties in OBSVBV that are set to 1).

To lift explanatory features encoded in EXPLBV: for each index position j in EXPLBV,

assert ExplanatoryFeature(fj) iff EXPLBV[j] is set to 1.

Discriminating properties: Discriminating properties are represented as a bit vector

DISCBV where DISCBV[i] is set to 1 iff the property pi discriminates between the set

Figure 2. (a) Example environmental

knowledgebase in the domain of cardiology,

from Figure 1b, represented as a bit matrix.

Index tables are used for lifting and lowering

environmental knowledge between a

semantic representation and bit vector

representation. (b) Index table for properties.

(c) Index table for features.

of explanatory features represented in EXPLBV. To lift discriminating properties

encoded in DISCBV: for each index position i in DISCBV, assert

DiscriminatingProperty(pi) iff DISCBV[i] is set to 1.

4.2 Efficient Bit Vector Algorithm for Explanation

The strategy employed for

efficient implementation

of the explanation task

relies on the use of the bit

vector AND operation to

discover and dismiss those

features that cannot

explain the set of observed

properties. It begins by

considering all the features as potentially explanatory, and iteratively dismisses those

features that cannot explain an observed property, eventually converging to the set of

all explanatory features that can account for all the observed properties. Note that the

input OBSVBV can be set either directly by the system collecting the sensor data or

by translating observed properties encoded in RDF (as seen in Section 4.1).

We will now sketch the correctness of the explanation algorithm w.r.t. the OWL

specification (Section 3.1). For each index position in EXPLBV that is set to 1, the

corresponding feature explains all the observed properties. (See note about indices7).

Theorem 1: Given an environmental knowledgebase KB, and it’s encoding as

described in Section 4.1 (i.e., KBBM), the following two statements are equivalent:

S1: The set of m observed properties {pk1, …, pkm}, i.e., ObservedProperty(pk1)

⊓ … ⊓ ObservedProperty(pkm), is explained by the feature fe, implies
ExplanatoryFeature(fe).

S2: The Hoare triple8 holds: { i  {1, …, m}: OBSVBV[ki] = 1 }

 Algorithm 1: Explanation

 { EXPLBV[e] = 1 }.

Proof (S1  S2): The ObservedProperty assertions are captured by the proper

initialization of OBSVBV, as stated in the precondition. Given (i) S1, (ii) the

single-feature assumption, (iii) the definition: ExplanatoryFeature ≡

∃ssn:isPropertyOf—
.{pk1} ⊓ … ⊓ ∃ssn:isPropertyOf—

.{pkm}, and

(iv) the fact that ExplanatoryFeature(fe) is provable, it follows that i 

{1, …, m}: ssn:isPropertyOf(pki,fe) is in KB. By our encoding, i  {1,

…, m}: KBBM[ki][e] = 1. Using lines 5-7, the fact that EXPLBV[e] is initialized

7 Note that property pki has property index ki and feature fej has feature index ej. So ki ranges

over 0 to |ssn:Property|-1 and e/ej range over 0 to |ssn:Feature|-1. i and j are merely indices

into the enumeration of observed properties and their explanatory features, respectively.

Thus, i ranges over 1 to |ssn:Property| and j ranges over 1 to |ssn:Feature|. (In practice,

initially i is small and j is large, and through each cycle of explanation and discrimination, i

increases while j diminishes.)
8 {P} S {Q} where P is the pre-condition, S is the program, and Q is the post-condition.

to 1 and is updated only for i  {1, …, m} where OBSVBV[ki] = 1, we get the

final value of EXPLBV[e] = KBBM[k1][e] AND … AND KBBM[km][e] = 1 (true).

(S2  S1): Given that {i  {1, …, m}: OBSVBV[ki] = 1} and {EXPLBV[e] = 1}

(pre and post conditions), it follows that i  {1, …, m}: KBBM[ki][e] = 1 must

hold. According to our encoding, this requires that i  {1, …, m}:

ssn:isPropertyOf(pki,e) holds. Using the definition of

ExplanatoryFeature, it follows that ExplanatoryFeature(e) is

derivable (that is, fe explains all the observed properties {pk1, …, pkm}).

Theorem 2: The explanation algorithm (Algorithm 1) computes all and only those

features that can explain all the observed properties.

Proof: The result follows by applying Theorem 1 to all explanatory features. Q.E.D.

4.3 Efficient Bit Vector Algorithm for Discrimination

The strategy employed for

efficient implementation of the

discrimination task relies on the

use of the bit vector AND

operation to discover and

indirectly assemble those

properties that discriminate

between a set of explanatory

features. The discriminating

properties are those that are

determined to be neither

expected nor not-applicable.

In the discrimination

algorithm, both the

discriminating properties bit vector DISCBV and the zero bit vector ZEROBV, are

initialized to zero. For a not-yet-observed property at index ki, the bit vector

PEXPLBV can represent one of three situations: (i) PEXPLBV = EXPLBV holds and

the ki
th

 property is expected; (ii) PEXPLBV = ZEROBV holds and the ki
th

 property is

not-applicable; or (iii) the ki
th

 property discriminates between the explanatory

features (and partitions the set). Eventually, DISCBV represents all those properties

that are each capable of partitioning the set of explanatory features in EXPLBV. Thus,

observing any one of these will narrow down the set of explanatory features.

We will now sketch the correctness of the discrimination algorithm w.r.t. the

OWL specification (Section 3.2). Each explanatory feature explains all the observed

properties. Lemma 1 shows that this is equivalent to all the observed properties being

expected properties of the explanatory features.

Lemma 1: If m observed properties {pk1, …, pkm}, i.e., ObservedProperty(pk1)

⊓ … ⊓ ObservedProperty(pkm), are explained by n features {fe1, …, fen}, i.e.,

ExplanatoryFeature(fe1) ⊓ … ⊓ ExplanatoryFeature(fen), then the

following holds: i: 1 ≤ i ≤ m: ObservedProperty(pki) 

ExpectedProperty(pki).

Proof Sketch: The result is obvious from the definition: ExplanatoryFeature ≡

∃ssn:isPropertyOf—
.{pk1} ⊓ … ⊓ ∃ssn:isPropertyOf—

.{pkm}. So, i,

j: 1 ≤ i ≤ m /\ 1 ≤ j ≤ n: ssn:isPropertyOf(pki,fej).
ExpectedProperty ≡ ∃ssn:isPropertyOf.{fe1} ⊓ … ⊓

∃ssn:isPropertyOf.{fen}.

Lemma 2 restates the assertion (from Lemma 1) that observed properties are also

expected properties of explanatory features, in terms of the bit vector encoding.

Lemma 2: The initial values of EXPLBV and OBSVBV satisfy the assertion: ki:

(OBSVBV[ki] = 1)  [e: (EXPLBV[e] = 1)  (KBBM[ki][e]) = 1)]. And hence,

i: (OBSVBV[ki] = 1)  [e: (EXPLBV[e] /\ KBBM[ki][e]) = EXPLBV[e])].

Proof Sketch: The claim follows from Lemma 1 and the bit vector encoding.

Lemma 3 generalizes Lemma 2 to elucidate an efficient means to determine when a

not-yet-observed property is expected, w.r.t. a set of explanatory features.

Lemma 3: Given property ki (pki) has not-yet been observed, i.e., OBSVBV[ki] = 0,

ExpectedProperty(pki) iff e: (EXPLBV[e] /\ KBBM[ki][e]) = EXPLBV[e].

Lemma 4 demonstrates an efficient means to determine when a not-yet-observed

property is not-applicable, w.r.t. a set of explanatory features.

Lemma 4: For explanatory features EXPLBV {fe | EXPLBV[e] = 1},

NotApplicableProperty(pki) iff e: (EXPLBV[e] /\ KBBM[ki][e]) =

ZEROBV[e].

Proof Sketch: The result follows from: (i) the definition of

NotApplicableProperty w.r.t. the set of explanatory features:

NotApplicableProperty(pki) iff ki, e: ExplanatoryFeature(fe)

 ¬∃ssn:isPropertyOf(pki,fe); (ii) [e: ExplanatoryFeature(fe) iff

EXPLBV[e] = 1]; and (iii) ki, e: [¬∃ssn:isPropertyOf(pki,fe) 

KBBM[ki][e] = 0].

Theorem 3: The discrimination algorithm (Algorithm 2) computes all and only those

properties that can discriminate between the explanatory features.

Proof: A not-yet-observed property is discriminating if it is neither expected nor not-

applicable. The result follows from the definition of discriminating property,

Lemma 3, and Lemma 4. Q.E.D.

5 Evaluation

To evaluate our approach, we compare two implementations of the explanation and

discrimination inference tasks. The first utilizes an OWL reasoner as described in

Section 3, and the second utilizes the bit vector algorithms described in Section 4.

Both implementations are coded in Java, compiled to a Dalvik9 executable, and run

9 http://code.google.com/p/dalvik/

http://code.google.com/p/dalvik/

on a Dalvik virtual machine within Google’s Android10 operating system for mobile

devices. The OWL implementation uses Androjena11, a port of the Jena Semantic

Web Framework for Android OS. The mobile device used during the evaluation is a

Samsung Infuse12, with a 1.2 GHz processor, 16GB storage capacity, 512MB of

internal memory, and running version 2.3.6 of the Android OS.

To test the efficiency of the two approaches, we timed and averaged 10

executions of each inference task. To test the scalability, we varied the size of the KB

along two dimensions – varying the number of properties and features. In the OWL

approach, as the number of observed properties increase, the ExplanatoryFeature

class (DEF 2) grows more complex (with more conjoined clauses in the complex

class definition). As the number of features increase, the ExpectedProperty class

(DEF 3) and NotApplicableProperty class (DEF 4) grows more complex. In the

bit vector approach, as the number of properties increase, the number of rows in

KBBM grows. As the number of features increase, the number of columns grows.

To evaluate worst-case complexity, the set of relations between properties and

features in the KB form a complete bi-partite graph13. In addition, for the explanation

evaluations, every property is initialized as an observed property; for the

discrimination evaluations, every feature is initialized as an explanatory feature. This

creates the worst-case scenario in which every feature is capable of explaining every

property, every property needs to be explained, and every feature needs to be

discriminated between. The results of this evaluation are shown in Figure 3.

Figure 3. Evaluation results: (a) Explanation (OWL) with O(n3) growth, (b) Explanation (bit

vector) with O(n) growth, (c) Discrimination (OWL) with O(n3) growth, and (d)

Discrimination (bit vector) with O(n) growth.

10 http://www.android.com/
11 http://code.google.com/p/androjena/
12 http://www.samsung.com/us/mobile/cell-phones/SGH-I997ZKAATT
13 http://en.wikipedia.org/wiki/Complete_bipartite_graph (accessed: June 8, 2012)

http://www.android.com/
http://code.google.com/p/androjena/
http://www.samsung.com/us/mobile/cell-phones/SGH-I997ZKAATT
http://en.wikipedia.org/wiki/Complete_bipartite_graph

Result of OWL evaluations: The results from the OWL implementations of

explanation and discrimination are shown in Figures 3a and 3c, respectively. With a

KB of 14 properties and 5 features, and 14 observed properties to be explained,

explanation took 688.58 seconds to complete (11.48 min); discrimination took

2758.07 seconds (45.97 min). With 5 properties and 14 features, and 5 observed

properties, explanation took 1036.23 seconds to complete (17.27 min);

discrimination took 2643.53 seconds (44.06 min). In each of these experiments, the

mobile device runs out of memory if the number of properties or features exceeds 14.

The results of varying both properties and features show greater than cubic growth-

rate (O(n
3
) or worse). For explanation, the effect of features dominates; for

discrimination, we are unable to discern any significant difference in computation

time between an increase in the number of properties vs. features.

Result of bit vector evaluations: The results from the bit vector implementations of

explanation and discrimination are shown in Figures 3b and 3d, respectively. With a

KB of 10,000 properties and 1,000 features, and 10,000 observed properties to be

explained, explanation took 0.0125 seconds to complete; discrimination took 0.1796

seconds. With 1,000 properties and 10,000 features, and 1,000 observed properties,

explanation took 0.002 seconds to complete; discrimination took 0.0898 seconds.

The results of varying both properties and features show linear growth-rate (O(n));

and the effect of properties dominates.

Discussion of results: The evaluation demonstrates orders of magnitude

improvement in both efficiency and scalability. The inference tasks implemented

using an OWL reasoner both show greater than cubic growth-rate (O(n
3
) or worse),

and take many minutes to complete with a small number of observed properties (up

to 14) and small KB (up to 19 concepts; #properties + #features). While we

acknowledge the possibility that Androjena may have shortcomings (such as an

inefficient reasoner and obligation to compute all consequences), our results are in

line with Ali et al. [10] that also found OWL inference on resource-constrained

devices to be infeasible. On the other hand, the bit vector implementations show

linear growth-rate (O(n)), and take milliseconds to complete with a large number of

observed properties (up to 10,000) and large KB (up to 11,000 concepts).

Consider the mobile application in which a person’s health condition is derived

from on-body sensors. A person’s condition must be determined quickly, i.e., within

seconds (at the maximum), so that decisive steps can be taken when a serious health

problem is detected. Also, for the application to detect a wide range of disorders (i.e.,

features) from a wide range of observed symptoms (i.e., properties) the KB should be

of adequate size and scope. In practice, an application may not require a KB of

11,000 concepts; however, many applications would require more than 19 concepts.

The comparison between the two approaches is dramatic, showing asymptotic

order of magnitude improvement; with running times reduced from minutes to

milliseconds, and problem size increased from 10’s to 1000’s. For the explanation

and discrimination inference tasks executed on a resource-constrained mobile device,

the evaluation highlights both the limitations of OWL reasoning and the efficacy of

specialized algorithms utilizing bit vector operations.

6 Related Work

The ability to derive high-level knowledge from low-level observation data is a

challenging task. As argued in this paper, a promising approach to machine

perception involves the use of Semantic Web technologies. This approach is quickly

evolving into an active area of research. Our work differs from related efforts in three

ways: (1) the use of OWL for defining the perception inference tasks, (2) the

definition of perception as an abductive process, and (3) the efficient execution of the

inference tasks using bit vector operations.

Previous works have utilized OWL for representing concepts in the domain of

sensing [4,5,18,19]. Subsequently, First-Order Logic (FOL) rules were often

employed to derive knowledge of the features in the environment [20-22]. Taylor et

al. [23] have used Complex Event Processing to derive knowledge of events from

observation data encoded in SSN. However, as we have shown, several inference

tasks useful for machine perception do not require the full expressivity of FOL; they

are expressible in OWL, a decidable fragment of FOL.

Second, as opposed to approaches using deductive (FOL) rules, we believe that

perception is an abductive process [11]. The integration of OWL with abductive

reasoning has been explored [24]; requiring modification of OWL syntax and/or

inference engine [25]. We demonstrated that, under the single-feature assumption,

abductive consequences can be computed using standard OWL reasoners.

And third, while OWL is decidable, the computational complexity still limits its

practical use within resource-constrained environments. A recent W3C Member

Submission [26] proposes a general-purpose RDF binary format for efficient

representation, exchange, and query of semantic data; however, OWL inference is

not supported. Several approaches to implementing OWL inference on resource-

constrained devices include [10,27,28,29]. Preuveneers et al. [28] have presented a

compact ontology encoding scheme using prime numbers that is capable of class-

subsumption. Ali et al. [10] have developed Micro-OWL, an inference engine for

resource-constrained devices implementing a subset of OWL constructs, but it is not

expressive enough for our inference tasks. McGlothlin et al. [30] serialize RDF

datasets and materialize data inferred through OWL reasoning using bit vectors. For

our inference tasks, however, it is not scalable. Since we cannot predict which

observed properties require explanation, this approach would generate and

materialize an ExplanatoryFeature class for all possible (exponentially many)

combinations of observable properties. In contrast, we have deployed specially

tailored linear algorithms that compute explanation and discrimination efficiently.

7 Conclusions and Future Work

We have demonstrated an approach to machine perception on resource-constrained

devices that is simple, effective, and scalable. In particular, we presented three novel

contributions: (1) a simple declarative specification (in OWL) of two inference tasks

useful for machine perception, explanation and discrimination; (2) efficient

algorithms for these inference tasks, using bit vector operations; and (3) lifting and

lowering mappings to enable the translation of knowledge between semantic

representations and the bit vector representations.

The bit vector encodings and algorithms yield significant and necessary

computational enhancements – including asymptotic order of magnitude

improvement, with running times reduced from minutes to milliseconds, and problem

size increased from 10’s to 1000’s. The approach is prototyped and evaluated on a

mobile device, with promising applications of contemporary relevance (e.g.,

healthcare/cardiology). Currently, we are collaborating with cardiologists to develop

a mobile app to help reduce hospital readmission rates for patients with congestive

heart failure. This is accomplished through the creation of a cardiology

knowledgebase and use of the explanation and discrimination inference tasks to

recognize a person’s health condition and suggest subsequent actions.

In the future, we plan to investigate more expressive approaches to explanation

(beyond the single-feature assumption), rank explanatory features based on

likelihood and/or severity, and rank discriminating properties based on their ability to

reduce the number of explanatory features. In addition, we plan to extend our

approach to stream reasoning by incorporating (i) periodic sampling and updating of

observations, and (ii) explaining observations within a time window.

As the number and ubiquity of sensors and mobile devices continue to grow, the

need for computational methods to analyze the avalanche of heterogeneous sensor

data and derive situation awareness will grow. Efficient and scalable approaches to

semantics-based machine perception, such as ours, will be indispensable.

Acknowledgements. This research was supported in part by US NSF award no.

1143717 (III: EAGER — Expressive Scalable Querying over Integrated Linked Open

Data). We also thank Michael Cooney for help with implementation and evaluation.

References

1. Neisser, U.: Cognition and Reality. Psychology, 218, San Francisco: W.H. Freeman and

Company (1976).

2. Gregory, R.L.: Knowledge in perception and illusion. In: Philosophical Transactions of the

Royal Society of London, 352(1358), pp.1121-1127 (1997).

3. W3C Semantic Sensor Network Incubator Group (SSN-XG) Charter.

http://www.w3.org/2005/Incubator/ssn/charter.

4. Lefort L., et al.: Semantic Sensor Network XG Final Report. W3C Incubator Group

Report, June 28 (2011). www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628.

5. Compton, M. et al.: The SSN Ontology of the W3C Semantic Sensor Network Incubator

Group. Journal of Web Semantics (2012) (in press).

6. Gray, A.J.G., et al.: A Semantically Enabled Service Architecture for Mashups over

Streaming and Stored Data. 9th Extended Semantic Web Conf., Heraklion, Greece, May 29

– June 2 (2011).

7. Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Semantic Sensor Data Search in a

Large-Scale Federated Sensor Network. 4th Intl. Workshop on Semantic Sensor Networks,

Bonn, Germany, Oct. 23-27 (2011).

8. Pfisterer, D., et al.: SPITFIRE: toward a semantic web of things. IEEE Communications

Magazine, 49(11), pp.40-48 (2011).

9. Sheth, A., Henson, C., Sahoo, S.: Semantic Sensor Web. IEEE Internet Computing, 12(4),

pp.78-83, July/Aug (2008).

http://www.w3.org/2005/Incubator/ssn/charter
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628

10. Ali, S., Kiefer, S.: μOR – A Micro OWL DL Reasoner for Ambient Intelligent Devices. 4th

Intl. Conf. on Grid and Pervasive Computing, 5529, pp.305–316, Geneva, Switzerland,

May 4-8 (2009).

11. Shanahan, M.P.: Perception as Abduction: Turning Sensor Data into Meaningful

Representation. Cognitive Science, 29, pp.103-134 (2005).

12. Reggia, J.A., Peng, Y.: Modeling Diagnostic Reasoning: A Summary of Parsimonious

Covering Theory. Computer Methods and Programs Biomedicine, 25, pp.125-34 (1987).

13. Henson, C., Thirunarayan, K., Sheth, A., Hitzler, P.: Representation of Parsimonious

Covering Theory in OWL-DL. 8th Intl. Workshop on OWL: Experiences and Directions,

San Francisco, CA, USA, June 5-6 (2011).

14. Henson, C., Sheth, A., Thirunarayan, K.: Semantic Perception: Converting Sensory

Observations to Abstractions. IEEE Internet Computing, 16(2), pp.26-34, Mar/Apr (2012).

15. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge

Representation. Ph.D. Thesis, RWTH Aachen, Germany (2001).

16. Bajcsy, R.: Active perception. IEEE, 76(8), pp.996-1005 (1988).

17. Henson, C., Thirunarayan, K., Sheth, A.: An Ontological Approach to Focusing Attention

and Enhancing Machine Perception on the Web. Applied Ontology, 6(4), pp.345–376

(2011).

18. Kuhn, W.: A Functional Ontology of Observation and Measurement. 3rd Intl. Conf. on

GeoSpatial Semantics, Mexico City, Mexico, Dec. 3-4 (2009).

19. Devaraju, A., Kuhn, W.: A Process-Centric Ontological Approach for Integrating Geo-

Sensor Data. 6th Intl. Conf. on Formal Ontology in Information Systems, Toronto, Canada,

May 11-14 (2010).

20. Keßler, C., Raubal, M., Wosniok, C.: Semantic rules for context-aware geographical

information retrieval. Smart Sensing and Context, 4th European Conf. on Smart Sensing

and Context, Guildford, UK, Sept. 16-18 (2009).

21. Scheider, S., Probst, F., Janowicz, K.: Constructing Bodies and their Qualities from

Observations. 6th Intl. Conf. on Formal Ontology in Information Systems, Toronto,

Canada, May 11-14 (2010).

22. Devaraju, A., Kauppinen T.: Sensors Tell More than They Sense: Modeling and Reasoning

about Sensor Observations for Understanding Weather Events, Special Issue on Semantic

Sensor Networks, Intl. Journal of Sensors, Wireless Communications and Control,

Bentham Science Publishers (2011) (in press).

23. Taylor, K., Leidinger, L.: Ontology-Driven Complex Event Processing in Heterogeneous

Sensor Networks. 8th Extended Semantic Web Conf., Heraklion, Greece, May 29 – June 2

(2011).

24. Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over ontologies.

Workshop on OWL: Experiences and Directions, Athens, GA, USA, Nov. 10-11 (2006).

25. Peraldi, S.E., Kaya, A., Möller, R.: Formalizing multimedia interpretation based on

abduction over description logic aboxes. 22nd Intl. Workshop on Description Logics,

Oxford, UK, July 27-30 (2009).

26. Binary RDF Representation for Publication and Exchange (HDT). W3C Member

Submission (2011). http://www.w3.org/Submission/2011/SUBM-HDT-20110330/.

27. Seitz, C., Schönfelder, R.: Rule-based OWL reasoning for specific embedded devices. 10th

Intl. Semantic Web Conf., Bonn, Germany, Oct. 23-27 (2011).

28. Preuveneers, D., Berbers, Y.: Encoding Semantic Awareness in Resource-Constrained

Devices. IEEE Intelligent Systems, 23(2), pp.26-33, March (2008).

29. Motik, B., Horrocks, I., Kim, S.: Delta-Reasoner: a Semantic Web Reasoner for an

Intelligent Mobile Platform. 21st International World Wide Web Conference

(WWW2012), Lyon, France, April 16-20 (2012).

30. McGlothlin, J.P., Khan, L.: Materializing and Persisting Inferred and Uncertain

Knowledge in RDF Datasets. 24th AAAI Conf. on Artificial Intelligence, Atlanta, GA,

USA, July 11-15 (2010).

http://www.w3.org/Submission/2011/SUBM-HDT-20110330/

