Managing the Life-Cycle of Linked Data with
the LOD2 Stack

Soren Auer, Lorenz Biihmann, Christian Dirschl, Orri Erling, Michael
Hausenblas, Robert Isele, Jens Lehmann, Michael Martin, Pablo N. Mendes,
Bert van Nuffelen, Claus Stadler, Sebastian Tramp, Hugh Williams

LOD2 Project*™, ¢/o Universitiat Leipzig, Postfach 100920, 04009 Leipzig, Germany
http://lod2.eu

Abstract. The LOD2 Stack is an integrated distribution of aligned
tools which support the whole life cycle of Linked Data from extrac-
tion, authoring/creation via enrichment, interlinking, fusing to mainte-
nance. The LOD2 Stack comprises new and substantially extended ex-
isting tools from the LOD2 project partners and third parties. The stack
is designed to be versatile; for all functionality we define clear interfaces,
which enable the plugging in of alternative third-party implementations.
The architecture of the LOD2 Stack is based on three pillars: (1) Soft-
ware integration and deployment using the Debian packaging system.
(2) Use of a central SPARQL endpoint and standardized vocabularies
for knowledge base access and integration between the different tools
of the LOD2 Stack. (3) Integration of the LOD2 Stack user interfaces
based on REST enabled Web Applications. These three pillars comprise
the methodological and technological framework for integrating the very
heterogeneous LOD2 Stack components into a consistent framework. In
this article we describe these pillars in more detail and give an overview
of the individual LOD2 Stack components. The article also includes a
description of a real-world usage scenario in the publishing domain.

Keywords: Linked Data, application integration, provenance

1 Introduction

The LOD2 Stack is an integrated distribution of aligned tools which support the
whole life cycle of Linked Data from extraction, authoring/creation via enrich-
ment, interlinking, fusing to maintenance. The LOD2 Stack comprises new and
substantially extended existing tools from the LOD2 partners and third parties.
The major components of the LOD2 Stack are open-source in order to facilitate
wide deployment and scale to knowledge bases with billions of triples and large
numbers of concurrent users. Through an agile, iterative software development

** The research leading to these results has received funding under the European
Commission’s Seventh Framework Programme from ICT grant agreement LOD2,
no. 257943. Corresponding author is auer@uni-leipzig.del

http://lod2.eu
auer@uni-leipzig.de

2 Auver et al.

approach, we aim at ensuring that the stack fulfills a broad set of user require-
ments and thus facilitates the transition to a Web of Data. The stack is designed
to be versatile; for all functionality we define clear interfaces, which enable the
plugging in of alternative third-party implementations. We also plan a stack con-
figurer, which enables potential users to create their own personalized version
of the LOD2 Stack, which contains only those functions relevant for their usage
scenario. In order to fulfill these requirements, the architecture of the LOD2
Stack is based on three pillars:

— Software integration and deployment using the Debian packaging system. The
Debian packaging system is one of the most widely used packaging and de-
ployment infrastructures and facilitates packaging and integration as well as
maintenance of dependencies between the various LOD2 Stack components.
Using the Debian system also allows to facilitate the deployment of the LOD2
Stack on individual servers, cloud or virtualization infrastructures.

— Use of a central SPARQL endpoint and standardized vocabularies for knowl-
edge base access and integration between different tools. All components of
the LOD2 Stack access this central knowledge base repository and write their
findings back to it. In order for other tools to make sense out of the output
of a certain component, it is important to define vocabularies for each stage
of the Linked Data life-cycle.

— Integration of the LOD2 Stack user interfaces based on REST enabled Web
Applications. Currently, the user interfaces of the various tools are techno-
logically and methodologically quite heterogeneous. We do not resolve this
heterogeneity, since each tool’s Ul is specifically tailored for a certain pur-
pose. Instead, we develop a common entry point for accessing the LOD2
Stack UI, which then forwards a user to a specific Ul component provided
by a certain tool in order to complete a certain task.

These three pillars comprise the methodological and technological framework
for integrating the very heterogeneous LOD2 Stack components into a consis-
tent framework. This article is structured as follows: After briefly introducing
the linked data life-cycle in we describe these pillars in more detail

(Section 3|). We describe a real-world use-case for the Stack in and
conclude with an outlook on future work in Section 5l

2 The Linked Data Life-Cycle

The different stages of the Linked Data life-cycle (depicted in include:

Storage. RDF Data Management is still more challenging than relational Data
Management. We aim to close this performance gap by employing column-
store technology, dynamic query optimization, adaptive caching of joins, op-
timized graph processing and cluster/cloud scalability.

Authoring. LOD2 facilitates the authoring of rich semantic knowledge bases, by
leveraging Semantic Wiki technology, the WYSIWYM paradigm (What You
See Is What You Mean) and distributed social, semantic collaboration and
networking techniques.

Managing the Life-Cycle of Linked Data with the LOD2 Stack 3

Manual .. sz
revision/ catian/

authoring. Enrichment

Linked Data
e . =)
Suene Lifecycle s
Extraction e
Repair
Search/
Eotonn

Fig. 1. Stages of the Linked Data life-cycle supported by the LOD2 Stack.

Interlinking. Creating and maintaining links in a (semi-)automated fashion is
still a major challenge and crucial for establishing coherence and facilitating
data integration. We seek linking approaches yielding high precision and
recall, which configure themselves automatically or with end-user feedback.

Classification. Linked Data on the Web is mainly raw instance data. For data
integration, fusion, search and many other applications, however, we need
this raw instance data to be linked and integrated with upper level ontologies.

Quality. The quality of content on the Data Web varies, as the quality of content
on the document web varies. LOD2 develops techniques for assessing quality
based on characteristics such as provenance, context, coverage or structure.

Evolution/Repair. Data on the Web is dynamic. We need to facilitate the evo-
lution of data while keeping things stable. Changes and modifications to
knowledge bases, vocabularies and ontologies should be transparent and ob-
servable. LOD2 also develops methods to spot problems in knowledge bases
and to automatically suggest repair strategies.

Search/Browsing/Exploration. For many users, the Data Web is still invisible
below the surface. LOD2 develops search, browsing, exploration and visual-
ization techniques for different kinds of Linked Data (i.e. spatial, temporal,
statistical), which make the Data Web sensible for real users.

These life-cycle stages, however, should not be tackled in isolation, but by
investigating methods which facilitate a mutual fertilization of approaches devel-
oped to solve these challenges. Examples for such mutual fertilization between
approaches include:

— The detection of mappings on the schema level, for example, will directly
affect instance level matching and vice versa.

— Ontology schema mismatches between knowledge bases can be compensated
for by learning which concepts of one are equivalent to which concepts of
another knowledge base.

4 Auver et al.

— Feedback and input from end users (e.g. regarding instance or schema level
mappings) can be taken as training input (i.e. as positive or negative exam-
ples) for machine learning techniques in order to perform inductive reasoning
on larger knowledge bases, whose results can again be assessed by end users
for iterative refinement.

— Semantically enriched knowledge bases improve the detection of inconsisten-
cies and modelling problems, which in turn results in benefits for interlinking,
fusion, and classification.

— The querying performance of RDF data management directly affects all other
components, and the nature of queries issued by the components affects RDF
data management.

As a result of such interdependence, we should pursue the establishment of
an improvement cycle for knowledge bases on the Data Web. The improvement
of a knowledge base with regard to one aspect (e.g. a new alignment with an-
other interlinking hub) triggers a number of possible further improvements (e.g.
additional instance matches).

The challenge is to develop techniques which allow exploitation of these mu-
tual fertilizations in the distributed medium Web of Data. One possibility is
that various algorithms make use of shared vocabularies for publishing results
of mapping, merging, repair or enrichment steps. After one service published
its new findings in one of these commonly understood vocabularies, notification
mechanisms (such as Semantic Pingback [I5]) can notify relevant other services
(which subscribed to updates for this particular data domain), or the original
data publisher, that new improvement suggestions are available. Given proper
management of provenance information, improvement suggestions can later (af-
ter acceptance by the publisher) become part of the original dataset.

3 Integrating Heterogeneous Tools into the LOD2 Stack

The LOD2 Stack serves two main purposes. Firstly, the aim is to ease the dis-
tribution and installation of tools and software components that support the
Linked Data publication cycle. As a distribution platform, we have chosen the
well established Debian packaging format. The second aim is to smoothen the
information flow between the different components to enhance the end-user ex-
perience by a more harmonized look-and-feel.

3.1 Deployment management leveraging Debian packaging

In the Debian package management system [12], software is distributed in architecture-
specific binary packages and architecture-independent source code packages. A
Debian software package comprises two types of content: (1) control information
(incl. metadata) of that package, and (2) the software itself.

The control information of a Debian package will be indexed and merged
together with all other control information from other packages available for the
system. This information consists of descriptions and attributes for:

Managing the Life-Cycle of Linked Data with the LOD2 Stack 5

(a) The software itself (e.g. licenses, repository links, name, tagline, ...),
(b) Its relation to other packages (dependencies and recommendations),
(¢) The authors of the software (name, email, home pages), and

(d) The deployment process (where to install, pre and post install instructions).

The most important part of this control information is its relations to other
software. This allows the deployment of a complete stack of software with one
action. The following dependency relations are commonly used in the control
information:

Depends: This declares an absolute dependency. A package will not be config-
ured unless all of the packages listed in its Depends field have been correctly
configured. The Depends field should be used if the depended-on package is
required for the depending package to provide a significant amount of func-
tionality. The Depends field should also be used if the install instructions
require the package to be present in order to run.

Recommends: This declares a strong, but not absolute, dependency. The Rec-
ommends field should list packages that would be found together with this
one in all but unusual installations.

Suggests: This is used to declare that one package may be more useful with
one or more others. Using this field tells the packaging system and the user
that the listed packages are related to this one and can perhaps enhance its
usefulness, but that installing this one without them is perfectly reasonable.

Enhances: This field is similar to Suggests but works in the opposite direction.
It is used to declare that a package can enhance the functionality of another
package.

Conflicts: When one binary package declares a conflict with another using a
Conflicts field, dpkg will refuse to allow them to be installed on the system at
the same time. If one package is to be installed, the other must be removed
first.

All of these relations may restrict their applicability to particular versions of
each named package (the relations allowed are <<, <=, =, >= and >>). This
is useful in forcing the upgrade of a complete software stack. In addition to this,
dependency relations can be set to a list of alternative packages. In such a case,
if any one of the alternative packages is installed, that part of the dependency
is considered to be satisfied. This is useful if the software depends on a specific
functionality on the system instead of a concrete package (e.g. a mail server or
a web server). Another use case of alternative lists are meta-packages. A meta-
package is a package which does not contain any files or data to be installed.
Instead, it has dependencies on other (lists of) packages.

Ezample of meta-packaging: OntoWiki. To build an appropriate package struc-
ture, the first step is to inspect the manual deployment of the software, its
variants and the dependencies of these variants. OntoWiki is a browser-based
collaboration and exploration tool as well as an application for linked data pub-
lication. There are two clusters of dependencies: the runtime environment and

6 Auver et al.

I
1 ontowiki |
1

S

| ontow iki-mysql ’ng{ ontow iki-virtuoso | owcli

| dl-learner

{ mysql)

’

{ . apache2 \) php5-common

Fig. 2. Example DEB-package dependency tree (OntoWiki). Some explanation: Boxes
are part of the LOD2 Stack, Ellipses are part of the Debian/Ubuntu base system,
Dashed forms are meta-packages, Relations: Depends (D), Depends alternative list
(A), Conflicts (C) and Suggests (S).

the backend. Since OntoWiki is developed in the scripting language PHP, it’s
architecture-independent but needs a web server running PHP. More specifically,
OntoWiki needs PHP5 running as an Apache 2 module. OntoWiki currently sup-
ports two different back-ends which can be used to store and query RDF data:
Virtuoso and MySQL. Virtuoso is also part of the LOD2 Stack while MySQL is
a standard package in all Debian-based systems. In addition to OntoWiki, the
user can use the OntoWiki command line client owcli and the DL-Learner from
the LOD2 Stack to enhance its functionality.

The dependency tree (depicted in is far from being complete,
since every component also depends on libraries and additional software which
is omitted here. Given this background information, we can start to plan the
packaging. We assume that users either use MySQL or Virtuoso as a backend
on a server, so the first decision is to split this functionality into two pack-
ages: ontowiki-mysql and ontowiki-virtuoso. These two packages are ab-
stracted by the meta-package ontowiki, which requires either ontowiki-mysql
or ontowiki-virtuoso, and which can be used by other LOD2 Stack packages
to require OntoWiki. Since both the MySQL backend and the Virtuoso backend
version use the same system resources, we need to declare them as conflicting
packages.

Installing the LOD2 Stack The LOD2 Stack is available at http://stack.lod2.
eu. Our reference OS is Ubuntu 12.04 LTS. Most of the components run on old
or more recent releases without a problem. In general, deploying the LOD2 soft-
ware stack or parts of it is simple. There are only two steps to execute in order
to install LOD2 Stack software: (1) Add the LOD2 Stack package repository to
the system’s repository list and update the repository index. (2) Install desired
software packages by using a graphical or text-based package management appli-

http://stack.lod2.eu
http://stack.lod2.eu

Managing the Life-Cycle of Linked Data with the LOD2 Stack 7

o current graph selected

“LoDe

Extraction & Loading Querying & Exploration Authoring Linking Enrichment Online Toolsand Services Configuration
OntoWiki (Admin) Properties of DefaultUserGroup =
User Extras Help Debug Resource
Searely(opResoees [http (OntoWiki/Cor JserGroup View Resource

”r o
Z\iktuoso

e

Knowledge Bases =
Edit View © Add Property H o Edit Properties H 5Cione | | 3¢ Delete \|

Ontowiki System Configuration

rdf:type o Usergroup

label DefaultUserGroup

Edit View Type

comment
Search in Navigation

This pre-configured user group can login, register new user and edit all models except the system models.

not editable model @ http:/ins.ontowiki.net/SysBase!
Model

grant access o Register new User
User & Login
Usergroup o Roliback
Action editable model @ AnyModel
readable model 5 AnyModel

not readable model & OntoWiki System Configuration
8 Ontowiki System Ontology

Fig. 3. The LOD2 Stack demonstrator is an interface to explore and use all the different
stack tools in an integrated way.

Packages / Components

Package A Package N
RDF - RDF
Package Info Package Info
q Namespace
Debian Installer LOD2 Workbench Graph Info e Rest API
Package Access Control Provenance User Graph
Graph Graph Graph 1.n SPARQL Backend

Fig. 4. Basic architecture of a local LOD2 Stack.

cation. The procedure can be executed using graphical front-ends like Synaptic.
Using the command line the LOD2 Stack installation is performed as followsﬂ

download the repository package

wget http://stack.lod2.eu/lod2repository_current_all.deb
install the repository package

sudo dpkg -i lod2repository_current_all.deb

update the repository database

sudo apt-get update

lod2demo is a meta root package that installs all LOD2 components
sudo apt-get lod2demo

3.2 Data integration based on SPARQL, WebID and vocabularies

The basic architecture of a local LOD2 Stack installation is depicted in
All components in the LOD2 Stack act upon RDF data and are able to
communicate via SPARQL with the central system-wide RDF quad store (i.e.

! More information, tutorials and FAQs can be found at http://wiki.lod2.eu.

http://wiki.lod2.eu

8 Auver et al.

SPARQL backend). This quad store (Openlink Virtuoso) manages user graphs
(knowledge bases) as well as a set of specific system graphs where the behaviour
and status of the overall system is described. The following system graphs are
currently used:

Package Graph: In addition to the standard Debian package content, each LOD2
Stack package consists of a RDF package info which contains:

— The basic package description, e.g. labels, dates, maintainer info (this is
basically DOAP data and redundant to the classic Debian control file)

— Pointers to the place where the application is available (e.g. the menu entry
in the LOD2 Stack workbench)

— A list of capabilities of the packed software (e.g. resource linking, RDB ex-
traction). These capabilities are part of a controlled vocabulary. The terms
are used as pointers for provenance logging, access control definition and a
future capability browser of the LOD2 workbench.

Upon installation, the package info is automatically added to the package graph
to allow the workbench / demonstrator to query which applications are available
and what is the user able to do with them.

Access Control Graph: This system graph is related to WebIIﬂ authentication
and describes which users are able to use which capabilities and have access
to which graphs. The default state of this graph contains no restrictions, but
could be used to restrict certain WebIDs to specific capabilities. Currently, only
OntoWiki takes this graph into account and the access control definition is based
on the WebAccessControl schemall

Provenance Graph: Each software package is able to log system wide provenance
information to reflect the evolution of a certain knowledge base. Different on-
tologies are developed for that use-case. To keep the context of the LOD2 Stack,
we use the controlled capability vocabulary as reference points.

In addition to the SPARQL protocol endpoint, application packages can use
a set of APIs which allow queries and manipulation currently not available with
SPARQL alone (e.g. fetching graph information and manipulating namespaces).
Two authorized administration tools are allowed to manipulate the package and
access control graphs:

— The Debian system installer application automatically adds and removes
package descriptions during install / upgrade and remove operations.

— The LOD2 Workbench (Demonstrator) is able to manipulate the access con-
trol graph.

All other packages are able to use the APIs as well as to create, update and
delete knowledge bases. gives an overview on the current LOD2 Stack
components in alphabetic order. In the following, we give a brief summary on
some of the most important packages.

2 http://www.w3.org/wiki/WebID
3 http://www.w3.org/wiki/WebAccessControl

http://www.w3.org/wiki/WebID
http://www.w3.org/wiki/WebAccessControl

Managing the Life-Cycle of Linked Data with the LOD2 Stack 9

Tool Category Supported Stages
Apache Stanbol [3] NLP Middleware Server Extraction

CubeViz Statistical data browser Visualization

DBpedia Spotlight [10] Entity Recognition and Linking Extraction

D2RQ [2] RDB2RDF Mapping Extraction

DL-Learner [6/7/9] Machine Learning in OWL Schema Enrichment
OntoWiki [I] Generic Data Wiki Authoring, Exploration
ORE [§] Knowledge Base Debugging Repair

PoolParty [14] SKOS Taxonomy Editor Authoring, Exploration
SemMap Spatial data browser Browsing, Exploration
Sig.ma EE [16] Data Browser Search, Exploration
Sieve [11] Quality Assessment and Fusion Quality, Repair

SILK [5] Linking Workbench Interlinking

LIMES [13] Linking Workbench Interlinking

Virtuoso [4] Hybrid RDBMS/Graph Column Store Storage / Querying
Valiant XML2RDF transformation Extraction

Table 1. Overview on LOD2 Stack components.

Apache Stanbol EIis an open source modular software stack and reusable set of

components (exposed via RESTful interfaces) for semantic content manage-
ment. One application is to extend traditional content management systems
with (internal or external) semantic services. In the LOD2 Stack, Apache
Stanbol can be used for NLP services which rely on the stack internal knowl-
edge bases, such as named entity recognition and text classification.

CubeViz E| is a widget for visualizing statistical data being published adhering

to the DataCube vocabulary. CubeViz analyses the DataCube data structure
definitions and generates menus for selecting dimensions, slices and measures
to be visualized employing different diagram types (e.g. bar, pie, line charts).

DBpedia Spotlight is a tool for automatically annotating mentions of DB-

pedia resources in text, providing a solution for linking unstructured infor-
mation sources to the Linked Open Data cloud through DBpedia. DBpedia
Spotlight recognizes that names of concepts or entities have been mentioned
(e.g. “Michael Jordan”), and subsequently matches these names to unique
identifiers (e.g. dbp:Michael I. Jordan, the machine learning professor or
dbp:Michael Jordan, the basketball player). Besides common entity classes
(i.e. People, Locations, Organisations), Spotlight also spots concepts from
the 320 classes in the DBpedia Ontology. It is integrated with Apache Stan-
bol and can thus be combined with other NLP tools.

D2RQ ﬂis a system for integrating relational databases (RDBMS) in RDF-

based data integration workflows. D2RQ allows querying a non-RDF database
using SPARQL, accessing the content of the database as Linked Data over

4 Apache Stanbol is a result of the IKS project http://iks-project.eul
5 http://aksw.org/Projects/CubeViz
S http://d2rq.org/

http://iks-project.eu
http://aksw.org/Projects/CubeViz
http://d2rq.org/

10 Auer et al.

the Web, creating custom dumps of the database in RDF formats for loading
into an RDF store, and accessing information in a non-RDF database using
the Apache Jena API D2RQ powers hundreds of public Linked Data sites
around the Web. D2RQ supports RDBMSs from all major vendors. Cur-
rent work focuses on extending D2R(Q and making it compliant with W3C'’s
R2RML and Direct Mapping standardsﬂ

DL-Learner framework provides a set of (semi-)supervised machine learning al-
gorithms for knowledge bases, specifically for OWL ontologies and SPARQL
endpoints. The goal of DL-Learner is to support knowledge engineers in con-
structing knowledge and learning about the data they created, by generating
axioms and concept descriptions which fit the underlying data.

ORE (Ontology Repair and Enrichment) allows knowledge engineers to improve
an OWL ontology or SPARQL endpoint backed knowledge base by fixing
logical errors and making suggestions for adding further axioms to it. ORE
uses state-of-the-art methods to detect errors and highlight the most likely
sources for the problems. To harmonise schema and data in the knowledge
base, algorithms of the DL-Learner framework are integrated.

OntoWiki is a PHP5 / Zend-based Semantic Web application for collaborative
knowledge base editing. It facilitates the visual presentation of a knowledge
base as an information map, with different views of instance data. It en-
ables intuitive authoring of semantic content, with an inline editing mode
for editing RDF content, similar to WYSIWYG for text documents.

PoolParty is a tool to create and maintain multilingual SKOS (Simple Knowl-
edge Organisation System) thesauri, aiming to be easy to use for people
without a Semantic Web background or special technical skills. PoolParty is
written in Java and uses the SAIL API, whereby it can be utilized with var-
ious triple stores. Thesaurus management itself (viewing, creating and edit-
ing SKOS concepts and their relationships) can be performed in an AJAX
front-end based on the Yahoo User Interface (YUI) library.

SemMap E| allows to visualize knowledge bases having a spatial dimension. It
provides a map view for selecting and exploring a spatial area and a faceted
navigation for filtering objects of a particular type or with particular prop-
erties in the selected area. The SemMap visualization widget is implemented
in JavaScript and interacts with the triple store solely via SPARQL.

Sig.ma EE (Sig.ma Enterprise Edition) is a standalone, deployable, customiz-
able version of the on-the-fly Web of Data mashup creation interface Sig.ma.
Sig.ma EE is deployed as a web application and performs on-the-fly data
integration from both local LOD2 Stack data sources and remote services.

Sieve includes a quality assessment module and a data fusion module. The qual-
ity of Linked Data sources on the Web is varies widely, as values may be out
of date, incomplete or incorrect. Moreover, data sources may provide conflict-
ing values for a single real-world object. Sieve’s quality assessment module
leverages user-selected metadata as quality indicators to produce quality as-
sessment scores through user-configured scoring functions. The data fusion

" http://www.w3.org/2001/sw/rdb2rdf/
8 http://aksw.org/Projects/SemMap

http://www.w3.org/2001/sw/rdb2rdf/
http://aksw.org/Projects/SemMap

Managing the Life-Cycle of Linked Data with the LOD2 Stack 11

SPATIAL SEMANTIC BROWSER

¥
-,

‘.\
§
er &

Pited

Fig. 5. The visualization widgets CubeViz (statistic) and SemMap (spatial data).

module is able to use quality scores in order to perform user-configurable
conflict resolution tasks.

Silk is a link discovery framework that supports data publishers in setting ex-
plicit links between two datasets. Using the declarative Silk - Link Speci-
fication Language (Silk-LSL), developers can specify which types of RDF
links should be discovered between data sources as well as which conditions
data items must fulfill in order to be interlinked. These link conditions may
combine various similarity metrics and can take the graph around a data
item into account using an RDF path language.

LIMES is a link discovery framework for the Web of Data. It implements time-
efficient approaches for large-scale link discovery based on the characteristics
of metric spaces. It is easily configurable via a web interface. It can also
be downloaded as a standalone tool for carrying out link discovery locally.
In addition, the Colanut GUI implements mechanisms for the automatic
suggestion of link configurations.

Virtuoso is an enterprise grade multi-model data server. It delivers a platform
agnostic solution for data management, access, and integration. Virtuoso
provides a fast quad store with SPARQL endpoint and WebID support.

Valiant is an extraction/transformation tool that uses XSLT to transform XML
documents into RDF'. The tool can access data from the file system or a Web-
DAV repository. It outputs the resulting RDF to disk, WebDAV or directly
to an RDF store. For each input document a new graph is created.

3.3 REST integration of user interfaces

Many of the components come with their own user interface. For example, the
Silk Workbench is a user interface for the Silk linking engine (cf. ??). This
workbench supports the creation of linking specifications, executing them and
improving them using the feedback from the user on the created links. With the
OntoWiki linked data browsing and authoring tool, a user can browse and update
information in a knowledge base (cf. [Figure 3)). By using both tools together,
the user gains the ability to study the input sources’ content structure and to
create links between them.

Many stack components request similar information from the user. For ex-
ample, selecting the graph of interest. To provide the end-user the feeling of

12 Auer et al.

a harmonized single application, we develop supportive REST-based WebAPIs.
These APIs offer a common application view of the LOD2 Stack. The more tools
support this API, the more harmonized and integrated the end-user experience
gets. Currently, the LOD2 Stack WebAPI consists of:

— Graph management: The set of graphs is not easy to maintain. SPARQL
does not support retrieval of all graphs. The only possible query which se-
lects all graphs that have at least one triple is performance wise quite costly:
SELECT DISTINCT 7g WHERE GRAPH 7g 7s 7p 7o The WebAPI also stan-
dardizes some meta information like being a system graph. When LOD2
Stack components use this common graph management WebAPI, the end-
user obtains a uniform look-and-feel with respect to graph management.

— Prefix management: To make RDF resources more readable, prefixes are used
to abbreviate URI namespaces. Typically, each application manages its own
namespace mapping. Using this REST API, a central namespace mapping is
maintained, thus producing consistency among stack components. The end-
user is freed from updating the individual component mappings. Moreover,
an update in one component is immediately available to another.

In addition to creating supportive REST-based APIs, the LOD2 Stack en-
courages component owners to open up their components using REST based
WebAPIs. For example, the semantic-spatial browser, a Ul tool that visualizes
RDF data containing geospatial information on a map, is entirely configurable
by parameters encoded within its invocation URL. Similarly other visualization
and exploration widgets (such as the CubeViz statistical data visualization) can
directly interact with the SPARQL endpoint (cf. . This makes it easy
to integrate into (third party) applications into the stack.

3.4 Enlarging the LOD volume and facilitating dataset discovery

All the above effort to improve the software support for Linked Data publish-
ing must have an effect in the daily practice of Linked Data publishing. For
that reason the LOD2 project collaborates with data providers. One such data
provider is the LOD2 partner Wolters Kluwer. Other collaborations include the
European Commission DG INFSO, with its Digital Agenda Scoreboard, and the
National Statistical Office of Serbia. Both improvements to the tools and data
are returned to the public.

To ease reuse, data must be easily found. Therefore, we enhanced the data
portal CKANﬂ This portal is being extended to allow SPARQL queries over
the repository. With that, we close the whole Linked Open Data cycle. Data is
accessed and transformed into RDF using extraction and storage components,
then it is augmented and interlinked with other data sources (found through
online data portals) and finally the newly created dataset is published as a new
datasource on the web, announcing itself to the world via a data portal and ready
to be used. Both, announcement as well as discovery via CKAN is an integral
part of the LOD2 Stack.

9 http://ckan.net

http://ckan.net

Managing the Life-Cycle of Linked Data with the LOD2 Stack 13

4 Facilitating Data Flows at a Global Publisher

Wolters Kluwer is a global knowledge and information service provider with more
than 19.000 employees worldwide and core competencies in the legal, tax and
business domains. Wolters Kluwer offers information for the professional in any
format including folio, software and services.

The Linked Data life-cycle mirrored to publishing business. The steps described
in the life-cycle highly resemble traditional workflow steps in a publishing house.
Therefore, conceptually adopting this life-cycle for the publishing business is
very reasonable. In traditional publishing, the focus is mainly on textual infor-
mation, starting from the authoring process up to layout and printing. Metadata
has recently become prominent with increasing use of digital libraries with so-
phisticated search functionalities. This shift of scope is still ongoing, and new
company internal processes and skills must be developed and implemented. Since
the LOD2 Stack tools are, by definition, (meta-)data oriented and highly stan-
dard compliant, they have great potential to fill the gap between very efficient
content processing and very flexible and powerful metadata management. As a
first step, we have focused on the following parts of the life-cycle:

Extraction: Usually, the content in a publisher’s house is stored in XML, and
stored in the same file as the text. Therefore, the extraction of the metadata
is an important step in the overall process.

Storage: All metadata must be accessible to all tools exploiting it.

Authoring: Human editors must be able to code their knowledge domain in
an easy way, which also means that features for proper maintenance and
development must be in place.

Interlinking: When the publishing industry talks about “linking”, it is mainly
referring to hyperlinks in text. The capabilities here are different, meaning
linking different knowledge sources in order to create a semantic network.

Search/Browse/Exploration: Allowing editorial staff to interact with the data
is key in an operational environment. The gap between technological rep-
resentation and semantic human interpretation must be bridged by using
metaphors and on-the-fly mapping between URIs and human-readable la-
bels.

Based on these core tasks, tools from the LOD2 Stack were selected in order
to fulfill the respective requirements. This resulted in a working prototype called
Pebbles, using and integrating the following tools:

— Virtuoso triple store for storage of the triples, along with its WebDAV envi-
ronment for storage of the accompanying XML source files.

— PoolParty for maintaining all the controlled vocabularies, including domain
taxonomies and thesauri. This environment is also used for publishing Linked
Data. Initially, labour law thesaurus and a court thesaurus have been made
publicly available under a Creative Commons license.

— SILK framework for mapping between the Wolters Kluwer knowledge bases
and external sources like DBpedia or the EUROVOC thesaurus.

14 Auer et al.

Silk Workbench o o: Ger-DEpedia JANGIENISeEY Generate Links Learn Reference Links Population About

Export as Silk-Ls Help

Property Paths &

Source: (Gerichtstaxonomy
Restriction: 7 rdfitype skosiConeept .

(custom path)

Parskosialtlabel

Target: |Gerichts-Skossy
Restriction: b rdfitype skes:Concept .

(custom path)

required: (]

abel 1 thresholds (0.0 |
Thrskos:prefLabel] weight
‘v 5 minChars 0|
Transformations e o

Alpha reduce

Phrskor

Fig. 6. Silk workbench with loaded linking specification to link law courts from different
datasets.

— OntoWiki as the user interface for human end users. Features for taxonomy
browsing and filtering, but also for metadata management like adding or
deleting or changing an instance, are used. There is also a connector to the
original XML file, so that the basic text information can be displayed in
parallel, rendered in HTML.

— Valiant and VEnrich (a wrapper around PoolParty Extractor) tools to make
the extraction process efficient and performant.

The resulting prototype (in fact an LOD2 Stack adoption) is currently being
evaluated by the operational editorial team, to assess its appropriateness as a
basis for an internal knowledge base within Wolters Kluwer Germany.

Our evaluation included, in particular, a dataset extracted from approxi-
mately 800.000 semi-structured XML documents from the German legal domain.
From these documents, 46.651.884 facts have been extracted. This process was
run in batch mode on a server with 8 GB memory and takes approximately 4
hours. The data is strongly linked within itself (the documents refer to other
documents in the document set). The exploration of linking to external public
sources has started. One of the few German sources available is the German
DBpedia. Using Silk, we were able to discover links to all German laws.

Lessons learned. Technical and project issues we encountered were:

— The creation of the extraction rules to create for each XML document an
associated RDF graph is an interactive and iterative process which requires
to combine technical knowledge and domain knowledge. In that process de-
ciding what will be the “controlled” terms (elements that are under some
editorial control, for example, exact names of courts of Germany) are ut-
most important. These should best be represented as rdf:Resource elements
with a stable URI. The process applied is depicted in figure Y. It shows a
non-trivial feedback loop where many people are involved.

Managing the Life-Cycle of Linked Data with the LOD2 Stack 15

— To support the process new software had to be developed: Valiant for XSLT
batch processing; A webservice for the PoolParty extractor to map pro-
duced RDF to controlled vocabularies; an adaptation of OntoWiki support-
ing nested RDF graphs.

— We also faced the challenge of finding ways for bridging the gap between
technical partners mainly coming from an academic world and the require-
ments of an industrial partner.

— Modeling and representing information from the legal domain in Europe is
extremely challenging due to the diversity and variety throughout Europe.

Opportunities beyond local business. The technology at hand has three main
characteristics, which make it a candidate for usage in a global environment: it is
about semantics, it is about connecting these semantics and it is about referring
to official international standards. Imagine a global publisher with businesses in
more than 40 countries worldwide. In order to offer cross-country offerings in
different languages, there are three approaches possible:
— Approaching each and every country individually and collecting the data on
an individual basis.
— Introducing a global content repository.
— Introducing a semantic layer on top of every local repository for automatic
extraction and bundling of data.
The first approach needs many effective and controlled workflows in place, in or-
der to be effective and efficient. The second approach is very expensive and time
consuming to implement. The third approach seems to be the best compromise
and most sustainable solution and is thus favored at Wolters Kluwer.

Summary and next steps. The LOD2 Stack serves the needs of a publishing
use case in many respects: The LOD life cycle reflects very well the tasks a
publishing house has to perform; getting a grip on semantics will be a key skill
of professionals and therefore also of their service providers; the wide usage of
standards ensures the flexibility of not being locked in to a specific tool or vendor.
The Pebbles prototype has shown that some of the tools in the stack are mature
enough, so that they can be used in an industrial environment.

Currently, we are looking at expanding the usage of the LOD2 Stack in
our use case, mainly by including NLP tools in order to address the classifica-
tion/enrichment step of the life-cycle. If this is successful, a lot of additional
added-value to our data and therefore to our products can automatically be ex-
ploited. In addition, we want to use the publishing capabilities of PoolParty in
order to publish our data as LOD data and therefore get in touch with the de-
veloper community. We seek a win-win situation, where our data is more widely
used and requirements for additional or completely new data can be met by us.

5 Conclusion and Outlook

In this article we presented the LOD2 Stack, the result of a large-scale effort
to provide technological support for the life-cycle of Linked Data. We deem

16

Auer et al.

this a first step in a larger research and development agenda, where derivatives
of the LOD2 Stack are employed to create corporate enterprise knowledge hubs
withing the Intranets of large companies such as the publisher Wolters Kluwer. In
order to realize our vision, we aim to further strengthen the light-weight REST-
API based integration between the components of the stack. The overall stack
architecture and guidelines can also serve as a blue-print for similar software
stacks in other areas. For the next iterations of the LOD2 Stack, we plan to
increase tool coverage and to include more 3rd party developed tools.

References

1.

10.

11.

12.

13.

14.

15.

16.

S. Auer, S. Dietzold, and T. Riechert. OntoWiki - A Tool for Social, Semantic
Collaboration. In 5th Int. Semantic Web Conference, ISWC 2006, volume 4273 of
LNCS, pages 736-749. Springer, 2006.

C. Bizer. D2r map - a database to rdf mapping language. In WWW (Posters),
2003.

. F. Christ and B. Nagel. A reference architecture for semantic content management

systems. In 4th Int. Workshop on Enterprise Modelling and Information Systems
Architectures, EMISA 2011, volume 190 of LNI, pages 135-148. GI, 2011.

O. Erling. Virtuoso, a hybrid rdbms/graph column store. IEEE Data Eng. Bull.,
35(1):3-8, 2012.

A. Jentzsch, R. Isele, and C. Bizer. Silk - generating rdf links while publishing
or consuming linked data. In ISWC 2010 Posters & Demo Track, volume 658.
CEUR-~-WS.org, 2010.

. J. Lehmann. DL-Learner: learning concepts in description logics. Journal of Ma-

chine Learning Research (JMLR), 10:2639-2642, 2009.

J. Lehmann, S. Auer, L. Biihmann, and S. Tramp. Class expression learning for
ontology engineering. Journal of Web Semantics, 9:71 — 81, 2011.

J. Lehmann and L. Biihmann. Ore - a tool for repairing and enriching knowledge
bases. In 9th Int. Semantic Web Conference (ISWC2010), LNCS. Springer, 2010.
J. Lehmann and P. Hitzler. Concept learning in description logics using refinement
operators. Machine Learning journal, 78(1-2):203-250, 2010.

P. N. Mendes, M. Jakob, A. Garcia-Silva, and C. Bizer. Dbpedia spotlight: Shed-
ding light on the web of documents. In 7th I-Semantics, 2011.

P. N. Mendes, H. Miihleisen, and C. Bizer. Sieve: Linked Data Quality Assessment
and Fusion. In 2nd Int. WS on Linked Web Data Mgmt (LWDM 2012) at EDBT
2012, 2012.

I. Murdock. The Debian Manifesto. http://www.debian.org/doc/manuals/project-
history/ap-manifesto.en.html, 1994.

A.-C. Ngonga Ngomo and S. Auer. Limes - a time-efficient approach for large-scale
link discovery on the web of data. In IJCAI 2011.

T. Schandl and A. Blumauer. Poolparty: Skos thesaurus management utilizing
linked data. In 7th Extended Semantic Web Conf., ESWC 2010, volume 6089 of
LNCS, pages 421-425. Springer, 2010.

S. Tramp, P. Frischmuth, T. Ermilov, and S. Auer. Weaving a Social Data Web
with Semantic Pingback. In EKAW 2010, volume 6317 of LNAI pages 135-149.
Springer.

G. Tummarello, R. Cyganiak, M. Catasta, S. Danielczyk, R. Delbru, and S. Decker.
Sig.ma: Live views on the web of data. J. Web Sem., 8(4):355-364, 2010.

	Managing the Life-Cycle of Linked Data with the LOD2 Stack
	Introduction
	The Linked Data Life-Cycle
	Integrating Heterogeneous Tools into the LOD2 Stack
	Deployment management leveraging Debian packaging
	Data integration based on SPARQL, WebID and vocabularies
	REST integration of user interfaces
	Enlarging the LOD volume and facilitating dataset discovery

	Facilitating Data Flows at a Global Publisher
	Conclusion and Outlook

