
SPARQL Update for Complex Event Processing

Mikko Rinne

Distributed Systems Group,
Department of Computer Science and Engineering,

Aalto University, School of Science, Finland
mikko.rinne@aalto.fi

Abstract. Complex event processing is currently done primarily with
proprietary definition languages. Future smart environments will require
collaboration of multi-platform sensors operated by multiple parties. The
goal of my research is to verify the applicability of standard-compliant
SPARQL for complex event processing tasks. If successful, semantic web
standards RDF, SPARQL and OWL with their established base of tools
have many other benefits for event processing including support for inter-
connecting disjoint vocabularies, enriching event information with linked
open data and reasoning over semantically annotated content. A software
platform capable of continuous incremental evaluation of multiple paral-
lel SPARQL queries is a key enabler of the approach.

Keywords: Complex event processing, SPARQL, RDF, Rete-algorithm

1 Smart Cities Need SPARQL

Smart environments of the future will need to interconnect billions of sensors
based on platforms from multiple vendors operated by different companies, pub-
lic authorities or individuals. To mitigate the need for overlapping sensors pro-
ducing duplicate measurements, interoperation of different platforms should be
maximized. Highly distributed, loosely coupled solutions based on common stan-
dards are needed in such open environments. Event processing systems based on
proprietary definition languages have challenges to adapt to multi-vendor con-
texts.

The benefit of RDF in complex event processing is that it provides a flexi-
ble representation of heterogeneous events in an open distributed environment,
where new sensors must be able to add new information fields without breaking
compability with existing applications. SPARQL, tailor-made to query RDF, was
augmented in SPARQL 1.1 Update by the powerful capability to insert selected
data into named triple stores. When combined with a continuous query process-
ing engine, INSERT gives SPARQL queries memory and capability to commu-
nicate and collaborate with each other. As a result, interconnected SPARQL
queries can be used to create complex event processing applications, capable
of handling layered and heterogeneous representations of event instances. When
taking into account their other benefits, semantic web standards RDF, SPARQL
and OWL form a very promising base for complex event processing.



In the Distributed Systems Group we are working on an incremental contin-
uous SPARQL query processor based on the Rete-algorithm [5]. The Instans1

platform supports selected parts of SPARQL 1.1 Query and Update specifica-
tions. The first generation of Instans was coded on Scala2 [1, 8–10]. Instans is
currently being ported to Lisp, where the Rete-net is compiled through macro ex-
pansion in the setup phase into executable Lisp code. The Scala-version reached
notification delays of 5-14 ms for the cases tested, but first measurements indi-
cate that the Lisp-version would be 100-200 times faster.

In event processing it is equally important to detect the events which didn’t
happen as the ones that did. Missing events are sometimes referred to as “no-
events” or “absence patterns” [4]. A “timed events” mechanism is implemented
with special predicate values used to mark input to a timer-queue. Events in
the timer queue can be set to trigger either after a relative time or at absolute
points in time. A triggered event can be used to set a new timed event, support-
ing periodic operations. The whole interface is SPARQL-compliant, with the
triggering of a timer changing a corresponding triple predicate from “waiting”
to “triggered”, the change being detectable in a SPARQL query.

2 Related Activities

Other research teams have been looking into streaming SPARQL, e.g. C-SPARQL3

[3] and CQELS4 [7]. Some differences to our approach are:

– Individual triples: “Data stream processing” focuses on individual time-
annotated triples. We are assuming heterogeneous event formats, where it
may not be known at the time of writing an event processing application,
what information future sensors are going to include into an event. Possibil-
ity to layer events is also of critical importance.

– Extensions: All other solutions extend SPARQL, typically with time-based
windowing or processing a stream order of data. We have used no extensions.

– Repetition of queries: Defined on windows based on time or number of triples
and a repetition rate, with which queries will be re-run. Our approach is
based on continuous and incremental matching of queries, where a particular
segment can be isolated by filtering.

Sparkweave5 [6] applies SPARQL queries to RDF format data using an extended
Rete-algorithm, but focuses on inference and fast data stream processing of
individual triples instead of heterogeneous events. Sparkweave v. 1.1 also doesn’t
have support for SPARQL 1.1 features such as SPARQL Update.

1 Incremental eNgine for STANding Sparql, http://cse.aalto.fi/instans/
2 http://www.scala-lang.org/
3 http://streamreasoning.org/download
4 http://code.google.com/p/cqels/
5 https://github.com/skomazec/Sparkweave



The Prolog-based ETALIS has a SPARQL compiler front-end called “EP-
SPARQL” [2], but it is more limited than the Prolog notation and doesn’t sup-
port (at the time of writing) SPARQL 1.1 features such as SPARQL Update,
which is critical for our study. EP-SPARQL concentrates on operations on event
sequences.

No other system based on collaborative SPARQL queries is known to us.
Current systems in the research community are mainly concentrating on running
one query at a time6. Even the ones allowing to register multiple simultaneous
queries are not expecting the queries to communicate during runtime.

3 Measuring Success

Our event processing work focuses on two main components:

1. Approach: Multiple collaborating SPARQL queries and update rules pro-
cessing heterogeneous events expressed in RDF.

2. Implementation (Instans): Incremental continuous query engine based
on the Rete-algorithm

The overall target of the approach is that it would be easy to create and main-
tain efficient event processing applications for open and heterogeneous environ-
ments. Research questions are related to finding good principles and patterns for
SPARQL queries used in event processing, creating a mapping to SPARQL for
the main operations needed in event processing (e.g. filtering, splitting, enrich-
ment, aggregation, pattern detection), developing efficient methods of linking
event information with background knowledge, adopting ontology-based infer-
ence mechanisms in event processing and comparing to other event processing
approaches.

An example application “Fast Flowers Delivery” is presented in [4]. It is a lo-
gistics management system, where flower stores send requests to an independent
pool of drivers to send flowers to customers. Drivers are selected based on loca-
tion and ranking. Ranking involves a periodic reporting system. Our next target
is to verify that SPARQL has all the elements in place to support also this kind
of event processing applications. Once the example cases have been confirmed
to work, generalized solution patterns for the complex event processing elements
found in literature using SPARQL building blocks will be defined.

Measuring the success of the implementation can be approached with:

– Implementation efficiency (compared to other Rete implementations)
– Algorithmic efficiency (Rete compared to other ways of processing SPARQL

queries)
– Performance of the approach (compared to other event processing systems)

Targets for empirical studies are e.g. latency (notification time), throughput,
memory consumption, system load, continuous operation over extended time

6 e.g. Jena (http://incubator.apache.org/jena/), Sesame (http://www.openrdf.org/)



periods and energy efficiency (especially when operating over sensors). In ad-
dition to empirical comparisons, this work is expected to provide answers for
understanding of garbage build-up in the system and for solutions to improve
performance compared to basic Rete.

As a first step comparisons with C-SPARQL have been carried out and doc-
umented on the project homepage using an example “close friends” service[8],
but since C-SPARQL is based on repeated execution of queries on windows, the
results are very difficult to compare. A “notification delay” in C-SPARQL is
dominated by the window repetition rate. Trying to minimize delay by increas-
ing repetition rate leads to wasted computing resources and duplicate detections.
Even doing so, the format of C-SPARQL only allows to execute queries once per
second (far too often for most applications), whereas the notification delays for
Instans have been clocking in at 5-14 ms (depending on hardware).

Both the approach and the implementation would be involved in testing
the ease of deployment and management of the system in a distributed way
in an open environment. Related questions are the processing and memory re-
quirements of the implementation, arrangements for communication between
distributed deployments and any security-related issues specific to the approach.
Based on our verifications both the approach and Instans look very promising.

References

1. Abdullah, H., Rinne, M., Törmä, S., Nuutila, E.: Efficient matching of SPARQL
subscriptions using Rete. In: Proceedings of the 27th Symposium On Applied Com-
puting. Riva del Garda, Italy (Mar 2012)

2. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified lan-
guage for event processing and stream reasoning. pp. 635–644. WWW ’11, ACM,
Hyderabad, India (2011)

3. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment
for C-SPARQL queries. In: Proceedings of the 13th International Conference on
Extending Database Technology - EDBT ’10. p. 441. Lausanne, Switzerland (2010)

4. Etzion, O., Niblett, P., Luckham, D.: Event Processing in Action. Manning Pub-
lications (Jul 2010)

5. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1), 17–37 (Sep 1982)

6. Komazec, S., Cerri, D.: Towards Efficient Schema-Enhanced Pattern Matching over
RDF Data Streams. In: 10th ISWC. Springer, Bonn, Germany (2011)

7. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive
approach for unified processing of linked streams and linked data. In: ISWC’11.
pp. 370–388. Springer-Verlag Berlin (Oct 2011)

8. Rinne, M., Abdullah, H., Törmä, S., Nuutila, E.: Processing Heterogeneous RDF
Events with Standing SPARQL Update Rules. In: Meersman, R., Dillon, T. (eds.)
OTM 2012 Conferences, Part II. pp. 793–802. Springer-Verlag (2012)

9. Rinne, M., Nuutila, E., Törmä, S.: INSTANS: High-Performance Event Process-
ing with Standard RDF and SPARQL. In: Poster in International Semantic Web
Conference 2012. Boston, MA (2012)

10. Rinne, M., Törmä, S., Nuutila, E.: SPARQL-Based Applications for RDF-Encoded
Sensor Data. In: 5th International Workshop on Semantic Sensor Networks (2012)


