
Replication for Linked Data

Laurens Rietveld?

Department of Computer Science, VU University Amsterdam, The Netherlands
laurens.rietveld@vu.nl

Abstract. With the Semantic Web scaling up, and more triple-stores
with update facilities being available, the need for higher levels of simul-
taneous triple-stores with identical information becomes more and more
urgent. However, where such Data Replication approaches are common
in the database community, there is no comprehensive approach for data
replication for the Semantic Web. In this research proposal, we will dis-
cuss the problem space and scenarios of data replication in the Semantic
Web, and explain how we plan on dealing with this issue.

Keywords: synchronization, replication, decentralized triple-stores, read-
write Web

1 Problem Description

Up until recently, Semantic Web applications often made use of read-only triple-
stores. These application are now taking up on using SPARQL-1.1 new ‘update’
facility, allowing users to write to triple-stores.

However, if triple-store contents change faster than they currently do, repli-
cation of Linked Data becomes a real problem, i.e. the challenge of keeping
the information consistent between different data hubs. The role of these stores
changes from that of a static content delivery system to a read and write content
deposit. “Personal data lockers” [19] are an example of this scenario. They allow
users to push information for it to be pulled by a variety of consumers. This high-
frequency, dynamic information exchange between triple-stores requires efficient
replication processes optimized for dealing with at least moderate volumes of
data.

Although data replication is a very well-studied issue for databases and in file-
synchronization for large-scale programming efforts, there is little work done with
a particular focus on Semantic Web infrastructure. In this light, our hypothesis
is:

An efficient and comprehensive Linked Data replication approach re-
quires more than the existing data replication techniques.

2 Relevance

This section explains why Data Replication is relevant for Linked Data, by de-
scribing three use cases.

? This work was supported by the Dutch national program COMMIT



2.1 Triple Store Mirroring

Semantic Web applications (in our case Hubble1, a Clinical Decision Support
prototype using Linked Data) often rely on external triple-stores from the linked
open data cloud. When one triple-store is slow or down, this has an effect on the
responsiveness of the application. In scenarios where clinicians can walk around
in the hospital with Hubble on their tablet, unreliable connections should not
hinder application functionality. How can we ensure that most of the application
still functions without internet connection? Linked Data Replication allows us
to mirror an external triple-store either locally or to another server. This way
we avoid direct dependencies on external triple stores: the application uses the
mirrored triple-store, and the mirrored triple-store is a full replication of the
master. In some cases, partial data replication is sufficient, e.g. when the ap-
plication only relies on a subset of the data provided by the triple-store. Such
applications where connectivity is unreliable is becoming more common in the
Semantic Web domain, as more and more Semantic Web applications are ap-
pearing on hardware such as smart phones and tablets.

2.2 Annotations on Census Data

This use-case involves Dutch historical census data available as Linked Data. An-
notation of original sources is one of the core activities of historical researchers.
However, they are typically only interested in a subset of the dataset. One can
consider a master triple-store containing all the data, and several subsets of the
triple-store used by different researchers. Any annotation made on the subset,
should be propagated to the master. Vice versa, any change made to the master,
should be propagated to all the subsets. This scenario involves a combination
of the problems of concurrent editing, dealing with version conflicts, and partial
replication.

2.3 SemanticXO and backups

Where the previous use-cases made use of a central ‘master’ triple-store, this
is not always the case. The following use-case is an example of decentralized
partial replication for Linked Data. The XO laptop is part of the One Laptop
per Child (OLPC) project which aim is to create educational opportunities for
the worlds poorest children by providing each child with a “rugged, low-cost,
low-power, connected laptop”. SemanticXO is a project which aims at providing
an infrastructure to integrate the programs running on the XO into the Web
of Data. These programs can then publish and consume content to and from
the WoD using the XO as the data provider [9]. The SemanticXO’s all contain
their own local triple-store. Due to unreliable internet connections, the laptops
are not always connected to a central server or to the internet. Therefore com-
munication between laptops in a mesh network has added value: exchanging
information without the need to be connected to a network router. Currently,
a-synchronous decentralized transfer of data is not possible. This makes tasks
such as backup difficult. By using the SemanticXO triple-stores, the graphs in
each triple-store can be replicated to other laptops. This way, the application

1 https://github.com/Data2Semantics/Hubble

https://github.com/Data2Semantics/Hubble


data of each SemanticXO is backed-up on other XO laptops or XO servers. Be-
cause the SemanticXO’s operate in environments with numerous constraints, the
data replication functionality needs to adapt to these constraints [15] (e.g. by
deciding which graphs in the triple-store to replicate, and in which order).

3 Related Work

3.1 Database Replication

Database replication is often used to improve performance and/or to improve
availability [5]. The majority of database replication techniques are based on the
state machine approach [18]. This approach ensures that replicated databases
which share the same initial state and execute the same requests in the same or-
der, will do the same thing and produce the same output. Inconsistent networks
(i.e. unreliable networks, or networks with replicas which are not always online)
often require a 2-phase or 3-phase commit protocol for every request, to main-
tain a consistent view. These protocols impose a substantial communication cost
on each database transaction. Research into group communication protocols [2]
reduces this overhead by avoiding the need to use these protocols on a per ac-
tion basis while still maintaining a global persistent order. The state machine
approach is usable for Linked Data, but requires server access; something which
is not always the case when replicating remote triple stores.

Research into partial database replication [1,10,21] shows that full replication
approaches are not directly applicable to partial replication scenarios. One of the
problems in partial replication is that insert/update queries might rely on data
which is missing on a partial replica. An approach to deal with this issue is
described in [10], where the transaction logs are send to every replica, regardless
of the replica holding a copy of the modified data. The replica only updates data
items for which it holds a copy. If data items are referenced for which is does not
hold a copy, the replica requests this information from the original server. As a
downside, the replica might often receive transactions which it will not execute,
thus creating unneeded overhead of network traffic. Additionally, because of the
connectivity in graph structures, the approach of requesting missing information
from the original server is not trivial task. In a Semantic Web scenario, an
insert/select query executed on a partial replica has no way of knowing whether
an empty results from the where clause is caused by missing information on the
partial replica, or whether this information should be absent anyway (i.e. is also
missing on the original triple-store).

3.2 Ontology Differences

Related work on ontology differences is often inspired by the classical Version
Control Systems. In [11], the causes, problems, and an approach for dealing
with ontology changes are described, to achieve maintaining of interoperability
while ontologies change. Here, the approach for dealing with different ontology
versions is by comparing ontological classes, and displaying these side-by-side in
RDF/XML.

[4] contains a description on how to formalize the differences betweevoidn
graphs. Such differences can then be used for the updating and synchronization



of graphs. A distinction is made between weak and strong patches, where a weak
patch is only applicable to the same graph it was computed from, and a strong
patch specifies the changes in a more context dependent manner. A weak patch
is similar to the database replication methodology described above. A strong
patch provides a way to deal with propagating these changes to partial replica.

Other related work on ontology differences is from [6,13] which focus on
representing changes made to ontologies. Additionally, work from [8] resulted
in an implementation (Protégé plugin) where the semantic differences between
ontologies is calculated.

What most of these approaches have in common is the need to calculate the
entailment and compare the complete graphs. For Linked Data replication this
is often too heavy to perform, especially if close to any-time behaviour is desired.
Research on incremental and stream reasoning ([3,7]) however show promising
results on the time it takes to calculate the entailment.

Another common aspect of these approaches is their unsuitability for partial
data replication, as in such a situation both graphs (the full master, and the
partial slave) will always be different.

3.3 Linked Data Replication

One example of work on Linked Data Replication is RDFSync[22]. Here, full
data replication between triple stores is achieved by decomposing the graphs
into smaller Minimum Self-Contained Graphs (MSGs). By comparing the hashes
of the MSGs of both triple store, the algorithm selects the MSGs it needs to
transfer. This way, only the difference (including a certain amount of overhead)
between triple stores is transferred. This approach however does not cover the
complete problem space of Linked Data replication. RDFSync does not take
into account partial data replication, and it requires installation on both servers;
something which is not always possible.

An example of partial data replication is [16], where partial data replication
in a master/master network is applied in the domain of mobile devices. Relatively
heavy operations such as conflict resolution and merging, is done on the server
(i.e. triple store), which lead to low hardware requirements for the mobile devices.
This approach requires a high level of server access on the triple store, something
which is not always possible. This work is continued in [23], where the partial
replication is made context-dependent (e.g. by user location or language).

Work on p2p Semantic Wiki’s focusses mainly on concurrent editing and re-
solving conflicts in a full replication scenario. Some approaches (e.g. giki) use
the GIT versioning system as underlying tool to deal with concurrent editing.
Another approach is done by [20], where collaborative editing techniques from
regular (non-Semantic-Web) p2p wikis (e.g. WOOT [12]) are extended to deal
with the RDF model. These full data replication approaches deal with mas-
ter/master networks, and all require a high level of server access to perform.

Finally, strongly related to Linked Data Replication is sparqlPuSH [14], which
provides a mechanism to get notifications when the content of a triple-store is
updated. Although this does require server access (installation) on the triple
store server, it might be useful in the context of partial data replication, as the
update mechanism supports notifications on subsections of the content.

https://github.com/notahat/giki#readme


4 Problem Space

4.1 Dimensions

We consider the problem space of data replication for RDF data to contain the
following six dimensions: network structure, partiality, size, difftype, access level
and time granularity.

Network Structure (Master-Master vs. Master-Slave): A network of master-
master nodes contains nodes which can all perform updates. The changes each
node makes are propagated to the other nodes. A master-master network intro-
duces problems such as concurrent editing. How can such a network deal with
conflicts when the same information is changed at the same time on two triple
stores. The alternative to a master-master network is a network of master-slave
nodes, where only the master has permission to update a graph, and the slaves
have read-only rights. Data is then replicated from the master to the slave.

Partiality (Full vs partial data replication): Partial replication increases the data
replication task considerably. How to detect changes related to the subset being
replicated is one of the challenges, and how to define and support the views of
data that should be replicated. Can we use rankings in the data to select the
‘important’ part of the graph to replicate, or use application/user profiles to
detect what the information needs of the applications or users are.

Network Size : The more nodes there are in the network, the more urgent prob-
lems such as complexity and performance become. This is especially the case for
master-master networks.

DiffType : Where the dimensions above are of a technical or infrastructural
nature, and contain (almost) binary classes, this dimension is more targeted
towards logics and is more scalular than binary. On one end of the scale we
have the structural difftype, where the other values on the scale (increasing in
complexity) makes use of semantics. The structural difftype essentially compares
serializations of two triple stores. This does not account for the same knowledge
represented differently in both stores.

Access level (No access vs. Black Box vs. White Box): The possible approaches
for data replication depend on the abstraction level of the triple-stores. Some
scenarios might require data replication to be implemented using a black box
approach: the replication framework should work on all kinds of triple stores, and
have no access to the lower level functionality of those stores. Other scenarios
might require data replication where a lower level of functionality and triple-store
access is required. This often results in different implementations for different
triple-store vendors, as the architecture of the stores differ. Alternatively, there
are situations where one might want to replicate a triple store without server
access, and with only SPARQL access. This decreases the possible solutions
considerably, as there is no way to install for instance a custom middle-layer
(e.g. used to track changes to the triple store) on the server.

Time Granularity : How often does a triple-store change? Can changes occur
any minute, or is it only updated once a year? The requirements and available
solutions differ greatly between both.



4.2 Methods

There are three methods for Data Replication. These methods differ in applica-
bility for each of the dimensions above.

1. Copying the complete graph. This is relatively inefficient, as often just a part
of the graph changed.

2. Propagating the update queries, or bulks of update queries. This approach
is difficult for partial data replication, as update queries on the full triple
stores have a different context than the same queries on the partial triple
store. This can result in different data being inserted in both triple-stores.

3. Propagating the actual difference between triple stores, either after a change
has been made or at larger intervals (e.g. depending on the update fre-
quency/time granularity of the triple-store). This requires knowing what
has changed, and a formalization of this difference.

4.3 Replication for Linked Data vs. Database Replication

The replication scenarios of Linked Data and database replication differ greatly.
Database replication scenarios often involve a closed network with large control
over the different database servers. Linked Data however is an open network,
with one public query protocol standard, where there is often no control over
external triple-stores.

These differences makes Linked Data replication partially a conceptually dif-
ferent problem than database replication. Applying the state-machine approach
to Linked Data requires a certain level of server access, something which is often
not feasible. Additionally (as explained in section 3.1), the graph structure and
inference functionality of Linked Data presents issues in partial replication which
are not covered by current database research.

5 Research Questions
The main question of this research is How can we achieve Linked Data
replication for all possible dimensions?.

The different dimensions shown in section4 present a large problem space
with different questions for each of them. In this doctoral research, we chose
to focus on the following questions: Can we distinguish between general
data replication scenarios for Linked Data, and how do these relate to
the different dimensions? This provides a specific set of requirements for the
different replication scenarios, and a roadmap with which to guide this research.

How to decide which part of the data to replicate? For partial data
replication, the selection of what to sync might not be obvious. Therefore, a
selection of the graph needs to be made which needs to be replicated, for example
using query logs, user profiles, or by rankings in the dataset.

How to efficiently use existing semantic diff algorithms in a data
replication scenario? Existing research on semantic differences mostly have
an analytical perspective, which might not fit the data replication requirements.
Vice versa, in data replication scenarios we might make assumptions on datasets,
which makes the semantic diff task easier. Something which is often not possible
from an analytical point of view.



This introduces another question, namely: How to calculate the semantic
difference between a triple store and its partial replica? It is not a trivial
procedure to calculate the semantic difference between stores when on store is
a subset of the other. After all, we are only interested in the difference of the
subset of the original triple store, and the partial replica.

How to efficiently detect changes? This differs depending on the level of
server access. No server access to a server means no middle-layer on the server
to detect changes. What is the best way to do such change detection using for
instance SPARQL?

What is the best ‘unit of change’? E.g. synchronizing the update query,
batches of update queries, the changed triples, a subset of the graph, or the
complete graph. Which scenarios require what kind of change set?

6 Approach
For the actual synchronization of the changes between the triple store, there
are several existing tools and platforms to use. In previous work we studied a
basic infrastructure for synchronization of basic RDF triples. We applied existing
tools such as rsync, MySQL and GIT in the domain of the Semantic Web,
and evaluated their performance using the standard SP2 Semantic Web query
testing environment. Besides these approaches there are other (e.g. Microsoft
Sync Framework or the OpenSync) tools and platforms we can use for the actual
distribution of data.

We will carry out our research in three phases. The first phase consists of
making an overview of the general Linked Data replication scenarios, and their
dimensions and requirements.

In the second phase, we will (starting with the scenario estimated as least
challenging) use current database and Linked Data techniques to develop a
method for data replication. If these techniques are insufficient in solving the
problem of data replication, then the research will aim to develop techniques
which do support data replication for this scenario.

In the third phase we will evaluate the Linked Data replication method cre-
ated in phase 2. For experiment validity, all the servers are implemented using
a virtual machine (VirtualBox) with the same hardware specifications. We will
use a dataset generated by SP2Bench[17], a data generator for creating arbitrar-
ily large DBLP2-like datasets. We measure the performance by the bandwidth
usage in the network of nodes, and the replication latency (i.e. the time it takes
for both triple-store to be consistent).

7 Conclusion
We showed the importance and different scenarios of Linked Data replication.
There is no other research with a comprehensive focus on data replication for
Linked Data. However, as shown in section 3, there is related work on which
we can build this research. We believe our previous work on synchronization
infrastructures for Linked Data, and the related work, provides a solid base to
build this research on.
2 http://dblp.uni-trier.de/

http://dblp.uni-trier.de/


References

1. Alonso, G.: Partial database replication and group communication primitives (Ex-
tended Abstract). In: Advances in Distributed Systems. pp. 1–6 (1997)

2. Amir, Y., Tutu, C.: From total order to database replication. In: Distributed Com-
puting Systems. pp. 494–503. IEEE Comput. Soc (2002)

3. Barbieri, D., et al.: Incremental reasoning on streams and rich background knowl-
edge. LNCS 6088(The Semantic Web: Research and Applications), 1–15 (2010)

4. Berners-lee, T., Connolly, D.: D delta: an ontology for the distribution of differences
between rdf graphs. In: WWW, http://www.w3.org/DesignIssues/Diff (2004)

5. Cecchet, E., Candea, G.: Middleware-based database replication: the gaps between
theory and practice. In: ACM SIGMOD: Management of data. pp. 739–752 (2008)

6. Franconi, E., Meyer, T.: Semantic diff as the basis for knowledge base versioning.
In: Proc. of the 13th International Workshop on Non-Monotonic Reasoning (2010)

7. Goncalves, R., Parsia, B.: Analysing the evolution of the NCI Thesaurus. In: 24th
IEEE International Symposium on Computer-Based Medical Systems (2011)

8. Groza, T.: Semantic Versioning Manager : Integrating SemVersion in Protégé. In:
Proceedings of the 9th International Protege Conference. pp. 1–3 (2006)

9. Guéret, C., et al.: SemanticXO : connecting the XO with the World’s largest in-
formation network. In: E-Technologies and Networks for Development (2011)

10. Holliday, J., et al.: Partial database replication using epidemic communication. In:
International Conference on Distributed Computing Systems. pp. 485–493 (2002)

11. Klein, M.: Ontology versioning on the Semantic Web. In: Stanford University. pp.
75–91 (2001)

12. Oster, G., et al.: Data consistency for P2P collaborative editing. In: 20th anniver-
sary conference on Computer supported cooperative work. pp. 259–268 (2006)

13. Palma, R., et al.: Change Representation For OWL 2 Ontologies. In: 6th Interna-
tional Workshop on OWL: Experiences and Directions. pp. 1–10 (2009)

14. Passant, A.: sparqlPuSH : Proactive notification of data updates in RDF stores
using PubSubHubbub. In: Scripting for the Semantic Web. pp. 1–10 (2010)

15. Rietveld, L., Schlobach, S.: Semantic Web in a Constrained Environment. In:
Downscaling the Semantic Web Workshop (ESWC) (2012)

16. Schandl, B.: Replication and versioning of partial RDF graphs. In: The Semantic
Web: Research and Applications. pp. 31–45 (2010)

17. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Perfor-
mance Benchmark. In: Data Engineering, 2009. pp. 222–233 (2009)

18. Schneider, F.B.: Implementing Fault-Tolerant Approach : A Tutorial Services Using
the State Machine. ACM Computing Surveys (CSUR) 22(4), 299–319 (1990)

19. Siegel, D.: Pull: The Power of the Semantic Web to Transform Your Business.
Portfolio (2009)

20. Skaf-Molli, H., Rahhal, C., Pascal Molli: Peer-to-peer semantic wikis. In: Database
and Expert Systems. pp. 196–213 (2009)

21. Sousa, A., Pedone, F.: Partial replication in the database state machine. In: Inter-
national Symposium on Network Computing and Applications. pp. 298–309 (2001)

22. Tummarello, G., Morbidoni, C.: RDFSync: efficient remote synchronization of RDF
models. In: 6th International Semantic Web Conference. pp. 533–546 (2007)

23. Zander, S., Schandl, B.: Context-driven RDF data replication on mobile devices.
In: 6th International Conference on Semantic Systems. vol. 3, pp. 131–155 (2011)


	Replication for Linked Data

