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Abstract. Robust solutions for ambient assisted living are numerous,
yet predominantly specific in their scope of usability. In this paper, we de-
scribe the potential contribution of semantic web technologies to building
more versatile solutions — a step towards adaptable context-aware en-
gines and simplified deployments. Our conception and deployment work
in hindsight, we highlight some implementation challenges and require-
ments for semantic web tools that would help to ease the development
of context-aware services and thus generalize real-life deployment of se-
mantically driven assistive technologies. We also compare available tools
with regard to these requirements and validate our choices by providing
some results from a real-life deployment.
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1 Introduction

Ambient Assisted Living (AAL) consists of a set of ubiquitous technologies em-
bedded in a living space to provide pervasive access to context-aware assistive
services. It can for example enhance ageing in place by helping elderly peo-
ple with their Activities of Daily Living (ADL). The available solutions in this
field are numerous and, in most cases, robust. However, their scope of usabil-
ity, mostly focused on security aspects, is generally very narrow [7,15]. To help
the generalization of such systems, it would be useful to integrate them in an
interoperable way. This would decrease their cost by sharing hardware or even
software resources. Leveraging the system in place, we could then provide other
context-aware services like reminders or ADL assistance at a lower cost and start
to tackle the Quality of Life (QoL) aspects [12]. The novelty of our approach
lies in the complete redesign of the semantic reasoning engine, able to adapt to
people with unpredictable behaviours and evolving needs. This engine aims at
providing real-time assistive services in a context-aware manner.



In Sect. 2, we present the potential use of semantic web technologies to
drive the interoperability of the system. In a nutshell, semantic descriptions can
be used to separate application logic from underlying models in order to avoid
writing application specific code [11]. The numerous semantic web tools available
have very disparate characteristics and performances. Moreover, benchmarks for
such tools have limitations and a more qualitative observation on the require-
ments is needed to give useful hints to developers [19]. As explained by Luther et
al. [11], ”choosing the appropriate combination of a reasoning engine, a commu-
nication interface and expressivity of the utilized ontology is an underestimated
complex and time consuming task”. We spent the last year putting in place
an appropriate test-case in order to give useful hints to AAL researchers and
developers. Sect. 3 describes our conditions on reasoners and ontology /rules for-
malization to be efficiently integrated in AAL systems. Finally, Sect. 4 provides
a comparison of some reasoners with regard to the suggested requirements and
some results from our validation process through real-life deployment. The au-
thors recommend to readers who are unfamiliar with AAL systems to read first
the description of our prototype in Sect. 4.3 in order to get a good idea of the
systems described in the coming sections.

2 Contributions of Semantic Web Technologies to AAL

The Internet of Things (IoT) describes a world where machines and physical ob-
jects are seamlessly integrated into the information network, and communicate
together to exchange and process information. Tim Berners-Lee’s Linked Data
[2] is possibly a syntax for this exchange that encloses semantic modelling and
annotation in its heart, thus improving the run-time adaptability of the com-
munication. The powerful combination of IoT and Linked Data drives pervasive
computing away from predefined bindings and static communication protocols.
AAL is only an application-domain of this combination, whose specificities are
being analysed here. Semantic technologies are used to perform context-aware
service provision in smart environments, and have a multi-faceted role in the
platform. Indeed, we referenced four main purpose to using these technologies
in our use-case: 1. the modelling of assistance in smart spaces, including non-
predictable behaviours, 2. the integration of all entities of the system, with an en-
vironment discovery and configuration mechanism, 3. the collaboration between
modules of the system based on a shared model and lexical, 4. the reasoning to
create the system’s intelligence, based on the three previous points. Of course,
this paper does not cover all these aspects and if a general introduction is given
in this section, it will later focus only on reasoning.

2.1 Enhancing Modularity & Flexibility

To build AAL spaces or smart spaces in general, one must integrate a line-up
of entities: sensor network, reasoning engine, environment actuators, interactive
devices and services. By enhancing the modularity and flexibility of the system,



we could go towards a larger scale deployability without decreasing the customiz-
ability of solutions. The Service Oriented Architecture (SOA) has a beneficial
contribution [10] as it provides mechanisms for the deployment and maintenance
of entities as well as for the communication between them. We have augmented
it with a SOA-based discovery protocol and the automatic generation of bundles
(SOA software resources) in order to add a plug & play support for sensors,
actuators and devices [1]. However, this only puts in place a mechanical plug &
play where entities discover each other and start exchanging data. Entities actu-
ally do not know about each other’s bindings with the environment. E.g. where
has this motion detector been deployed? Who is carrying this handphone? Be-
ing able to parse data received from a new unknown entity is not enough; you
need to be given its semantic. We have imagined, and described in a previous
publication [1], a semantic plug & play where entities — services, sensors, actu-
ators or devices — provide their semantic profile when ”shaking hands” with the
platform. This profile can be edited during the development, the deployment, or
updated at run-time by users or even other entities. Doing so, a real plug & play
behaviour is created where entities are able to genuinely understand each other
to collaborate. Our solution is represented in Fig. 1.
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Fig. 1. High-level representation of our context-aware service platform

In the literature, pervasive systems often utilize a layer providing a level
of abstraction common to all entities, helping communication, discovery and
collaboration using protocols and data formats [10]. Our alternative approach
is to use semantic web technologies to bring down to each entity the possibility
to understand newly discovered other entities, thus decreasing the overhead on
this layer, which is then solely in charge of a higher level system coordination.



2.2 An Adaptable Reasoning Engine for Context-Awareness

With the hardware plug & play and the software modularity in place, we had
to reduce our use of specific application code. Indeed, adopting an imperative
approach to implement context sensitive applications is very robust and requires
only a short design phase. However, it brings deep constraints in term of reusabil-
ity in personalized environments and adaptability in dynamic environments. As
introduced in Sect. 1, a declarative approach allows for a more efficient sepa-
ration between application logic and underlying models describing the use-case
and peculiarities of the environment. Although this choice represents an impor-
tant trade-off on the system’s robustness and the effort to be put at the design
phase, it seems unavoidable when targeting a deployment of more than just a
dozen of homes. Although reasoners are the heart of AAL solutions, they do not
need to be extremely powerful or complex. Their true requirement is to reach
a consistent result in a limited time, which can be implemented using semantic
reasoners. Moreover, this choice integrates well with the semantic description
of the environment and its entities needed for the semantic plug & play pre-
sented above. The selection of relevant services and interaction modalities is
then performed using semantic matching between the knowledge about users’
context derived from sensor events and formalized into an ontology, and respec-
tively services’ and devices’ semantic profiles. Finally, and as detailed further
in Sect. 3.4, semantic technologies are perfectly adapted to model contextual
information, along with its specificities.

3 Requirements on Semantic Inference Engines for AAL

In this part, we try to highlight the ”must have” features of a semantic reasoner
in order to be used efficiently into an AAL deployment.

3.1 Retractability of Knowledge

In assisted living spaces, contextual information is evolving and a detected situa-
tion is valid for a short period of time. The most needed feature for a reasoner to
be used in AAL is the possibility and ease to retract information, both asserted
and inferred. It has not been ignored that removing pieces of knowledge from an
ontology is traditionally not a good practise. However, there are several reasons
to support this choice in the targeted use-case. Most importantly, we do not want
to overload the triple store with deprecated triples having an older time-stamp.
We would also prefer to avoid dedicating processing time to select triples with
the newest time-stamp. To support this choice, a mechanism has been designed
such that the existence of a ”thing” is never removed from the ontology. In other
words, triples defining a new class, property or individual will never be removed.
In an ontological graph, nodes are therefore anchored, while branches can be
changed freely to represent the current contextual information available. E.g. if
a resident walks to another room, the triple ns:resident aal:locatedIn ns:kitchen



is replaced by ns:resident aal:locatedIn ns:bedroom, whereas the ”existential”
triples ns:kitchen rdf:type aal:Room and ns:bedroom rdf:type aal:Room remain
untouched.

We would like as well to retract inferred triples easily, when the conditions
necessary to their inference are not fulfilled anymore. Using a graphical analogy,
let us consider an asserted piece of knowledge as a node, and the knowledge
inferred partly from this node as new nodes branching downwards (unidirec-
tional relation) from it. The expected behaviour is that if a node is removed,
which means the represented piece of knowledge is withdrawn, all nodes branch-
ing downwards from it should be removed as well. Although it is easy to use
SPARQL queries, among others, to update the asserted triples in the ontology,
the automatic removal of inferred triples as described above is more complex.
Due to the monotonicity assumption of the Resource Description Framework
(RDF), and the Semantic Web Rule Language (SWRL) being built on top of
RDF, SWRL rules can be written to add new triples into an ontology but not
to retract triples from it [14]. If one tries to assert a new value for a property,
two values will then be coexisting. Optionally, the property can be characterised
as functional to indicate that only one value is possible. However, this does
not mean that the property will be updated but rather that the knowledge will
become inconsistent when the two values are coexisting.

Some reasoners — e.g. Pellet [17], Euler [6] — have a rule syntax that is
not expressive enough to allow the retraction of knowledge. One must anno-
tate a part of the knowledge as deprecated and write external queries (e.g. with
SPARQL) to filter it out. Others — e.g. Jena [4], RacerPro [8] — use rules that
can remove triples. In both cases, it is needed to manually retract knowledge
inferred from the asserted-then-retracted "nodes”. We did implement some in-
ference rules dedicated to cleaning the ontology after a retraction happened.
Although it is working well, this increases the complexity at design level and
naturally decreases the performance of the system. We finally realized when
experimenting on Euler that even though its expressiveness did not allow retrac-
tion of knowledge; the reasoner having no live state, the knowledge previously
inferred from now-deprecated data is simply not inferred anymore. The live state
of a reasoner is the state in which the reasoner remains in between two inference
process. It is used so as to keep in memory the inferred state of an ontology,
thus inferred knowledge does not need to be inferred again. In our use-case, we
prefer to use a rule engine with no live state (i.e. no memory), as it is then only
needed to care about information being asserted or retracted, and the rest is
handled automatically, similarly to the ”downwards branching nodes” approach
described above. To summarize, reasoners often implement complex mechanisms
to infer knowledge with incremental updates; but we found more suitable, in the
AAL use-case, to use a naive-only inference like what is provided by Euler.

3.2 Processing Efficiency

Taking into account more common applications of the semantic web in the cloud,
one can easily imagine having reasonable resources to process knowledge. How-



ever, in the AAL use-case, it is necessary to embed the reasoner into a low
processing power and low power consumption device, so that this device can
be easily integrated anywhere in a house. E.g. the reasoner used for our deploy-
ment runs on a tiny debian machine whose CPU turns at 500MHz with 500Mb of
RAM, and consuming only 5W. Moreover, the data inferred is highly dynamic;
unlike web data which is updated by human users with a low frequency, context
information is derived from ambient sensors activations representing people’s
behaviour in real-time, therefore the update rate is way below the minute. Fi-
nally, the inference is used to compute which services should be provided in the
environment and with which interaction modality; this is decided depending on
people’s action so users should have the feeling of an almost instant response
time. Therefore the minimum inference frequency has to be set very low, which
forms the requirement on the processing time, thus on processing efficiency.

3.3 Scalability of Inference

The conceived service platform for assistive living, partly described in this paper,
is usually tested in a single room or at most an apartment. But it is difficult
to estimate now the extent of the monitored/serviced space in which it will
be deployed once AAL technologies get a larger impact. Let us consider that
we are deploying at the scale of a whole building: should we plan to have one
reasoner per room, per apartment or even per building? With regard to the
Linked Data philosophy [2] and due to the interconnection of events inside the
building, it makes sense to think of a reasoner per building to be able to draw
relations between the data from all apartments. Or even considering the smart
cities initiatives — suggesting the extension of smart spaces to the city level [3]
— the number of triples to be considered at the reasoning step might suffer a
genuine explosion. Thus we have to include a requirement on the scalability of the
system, e.g. reasoners inferring with linear cost should be prioritized compared
to those running with quadratic cost. Although we expressed in the introduction
our reservations towards semantic reasoners’ benchmarks, we give in Sect. 4 some
figures to compare selected reasoners in this perspective.

3.4 An Opening on Uncertainty & Quality of Information

The main peculiarities of context information lie in its high interrelation, which
is leveraged through the linked data approach; and its imperfection, inconsistent
or incomplete information being common due to faulty hardware, delays between
production and consumption of the information, or even networking problems.
Although this is obvious to the engineer, ontological knowledge is naturally pro-
cessed as an absolute truth if no notion of uncertainty or quality of information is
introduced in the semantic model or if the reasoner is not conceived to consider
these notions. A semantic modelling language can cope with this by introduc-
ing classes of information and associations in accordance with their persistence
and source. The adopted description must also allow a range of temporal char-
acterizations as well as alternative context representations at different levels of



abstraction. Introducing such concept into the reasoning engine remains very
challenging, this is why we entitled this part opening on. Although we do not
have a strong contribution here, we could not write about these requirements
without mentioning the Qol aspect. The idea of the classifying associations by
Henricksen et al. [9] appears to be an important key towards Qol-based seman-
tic reasoning and although they did not explicitly refer to the semantic web
paradigm, the model proposed was obviously close to it and its semantic imple-
mentation would be straight forward. We also believe that the uncertainty aspect
will not be tackled by the engine itself, rather that it is the way the engine is
used and wrapped that can ever address this aspect.

4 The Appropriate Reasoner

We have presented in the previous section the requirements we gathered for a
practical semantic reasoner in the AAL use-case. Some are immediate necessi-
ties like the retractability of knowledge or the processing efficiency, others are
key challenges enabling larger scale deployments like the scalability, or a better
reliability like the quality of information. Below, we give some feedback on 4
available reasoners that we have selected and tried over the last year.

4.1 Comparing Reasoners’ Usability

Jena: the Predominant Reasoner. In the AAL community, the Jena frame-
work [4] is predominantly used. This might partly be due to the unawareness
about its alternatives as well as its apparent ease of use compared to other rea-
soning engines. Indeed, Jena has a few advantages compared to its rivals with
probably the most complete Java API for building semantic applications. Unlike
most of the other alternatives, Jena has been designed to be used on Java and its
way of programming is therefore more natural for a lambda programmer getting
a first hand on semantic web technologies. Actually, taking into account the pos-
sibility to implement Java built-ins to be called directly from an inference rule,
one might not even realize the differences brought by the declarative reasoning
paradigm. Moreover, Jena comes fully-featured with, among others, an API to
build, populate and modify ontologies, an inference engine using its own rule
format, and an integrated SPARQL query point.

Despite all the above, we are having mixed feelings about our experience de-
veloping with Jena and would like to express some reservations about it. In fact,
without having to load the ontology much, we could observe some inconsistencies
in the reasoning when trying to use several rules to collaborate on one decision.
When searching for an explanation to this flimsy behaviour, we found out that
Jena was actually having an incomplete integrated inference engine [16] and that
using Pellet [17] as an external reasoner was advised. Consequently we started
to compare the features of available semantic reasoners and their ease of use in
our peculiar use-case. Our motivation towards writing this paper grew as we met
researchers in the community interested in finding an appropriate reasoner.



Pellet: the Famous Alternative. Since Jena has an option to use Pellet [17]
as an external reasoner, it allows to change reasoner while keeping the system
infrastructure, like the modules updating the ontology depending on sensors
inputs. Moreover, Pellet’s rules are using SWRL, the Semantic Web Rule Lan-
guage, which makes the rules compatible with some other reasoners. Logically
we decided to try Pellet but as explained in Sect. 3.1, SWRL does not allow
retraction of triples and makes it difficult to be used in AAL use-cases.

RacerPro: the Fully-Featured Commercial Option. We then searched a
reasoner able to tackle the knowledge retractability issue and found RacerPro [8],
a commercial reasoner with add-ons to the W3C recommendations. Essentially,
its expressiveness allows for the retraction of triples from the ontology standing in
memory. Though it is necessary to write rules dedicated to retract triples to clean
the ontology, the system is at least functional. Other than being a closed-source
shareware, RacerPro has its own downsides due to its own powerful rule/query
language. This language is actually the most complex one we have used, which
did bring a heavier workload on the implementation phase.

Euler: the Lightweight, Naive Reasoner. While facing implementation dif-
ficulties with RacerPro, we found an alternative solution with Euler [6], more
specifically the EYE implementation by De Roo et al. from AGFA Healthcare.
Euler is notably using Notation3 (N3), the most human-readable RDF syntax.
It has the advantage to be among the fastest reasoners we found that had a
full OWL-DL entailment, and it is also the most lightweight of the reasoners
we selected. However, we faced the same retractability limitation as with Pellet.
Despite this, we found out that Euler providing a naive inference, it was not
problematic as explained in Sect. 3.1. Our current choice remains Euler and the
validation results presented in Sect. 4.3 have been obtained using EYE.

Synthetic Comparison. We have described above the process we went through
and highlighted the pros and cons of each selected reasoner. The Table 1 sum-
marizes the aspects taken into consideration with some key specifications for
each of the four reasoners. Its first half provides a good representation of the
engines’ expressiveness, the ease of use being purely qualitative, subjective, and
based on our hands-on experience. It is interesting to note that languages purely
implementing the semantic web specifications are the ones we found the most
straight forward to use. Based on this first half, Pellet and Euler appear to be
the two best options. We refined then our analysis with more quantitative spec-
ifications, addressing in a way the concerns raised in Sects. 3.2 & 3.3. Despite
the reservations we hold about such benchmarks, we realize with the response
time figures the superiority of Euler. Finally, the qualitative characterisation of
engines’ scalability is given subjectively, taking into account the response time
profile, the ease of use and the inference completeness (OWL-DL entailment).
These multiple aspects and requirements taken into consideration, this is why



Table 1. A comparative table of semantic reasoners

Jena Pellet RacerPro EYE
OWL-DL entailment incomplete full full full
Rule format own, basic & SWRL own, powerful N3 &
built-ins built-ins
Retractability yes can emulate yes stateless
stateless
Ease of use average easy complex easy
Response time for 783ms 442ms ~503ms 4ms
100 triples!
Response time for 29,330ms 38,836ms ~44,166ms 40ms
1,000 triples’
Response time for out of out of out of memory 436ms
10,000 triples’ memory memory
Scalability Very limited Average Limited Good
Size (download) 22.3Mb 24.3Mb 60.3Mb 12.9Mb
Licensing freeware, freeware, shareware, freeware,

open source open source closed source open source

we chose to use Euler. To be specific about the scope of this choice, the authors
would like to highlight that Euler has two advantages applicable to any use-
case: its scalability, due to its optimized implementation based on YAP-Prolog,
and its human readable formalization language using N3. However, Euler is a
naive (memoryless) reasoner, which is crucial from our perspective but might
be counter-productive in many applications. Here lies the main trade-off in our
choice.

At this point, one might also wonder about the level of reasoning chosen in
our implementation. Using Fuler for the inference, developers are able to use
any subset of rules catering to their specific needs. Our implementation is now
using a subset of OWL2-RL, but we might choose to use rules from a higher
level of reasoning if needed in the future.

4.2 Design: Integration of the Reasoner into a Service Platform

In order to validate our ideas and choices, Euler has been integrated into a
context-aware service platform, insuring the selection and provision of appropri-
ate services to end-users depending on their profile and situational needs [18].
As represented in Fig. 2, the platform is based on the OSGi specification, specif-
ically the Apache Felix implementation, which materializes the SOA approach

! Figures extracted from [13] for Jena, Pellet and Euler. Cross-integration of RacerPro
through a comparison with Pellet [11].



and facilitates the deployment of AAL technologies as explained in Sect. 2.1.
Inside the Felix container, the platform is composed of several modules (called
bundles in the OSGi lexical) that can be installed, updated and removed at run-
time without interrupting the platform’s operation. We use this aspect of the
OSGi specifications to implement the plug & play behaviour introduced in Sect.
2.1. A Wireless Sensor Management Service (WSMS) bundle has been developed
to handle the ZigBee communication between sensors and the platform: once a
sensor is turned on in the environment, this bundle automatically generates a
new bundle representing and describing the sensor in the platform. A similar
mechanism ensuring devices plug & play is currently being developed with a
bundle supporting heterogeneous communication layers (e.g. Wi-Fi, Bluetooth,
3G). The dynamic aspect of OSGi bundles also permits the integration of new
end-user services (e.g. reminder services, home control) at runtime.
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Fig. 2. Detailed architecture of our context-aware service platform

To use Euler as the core reasoner of the platform, it had to be integrated
on OSGi. We took the Euler open source Java API and modified it slightly to
make it compatible with the dynamic class loading feature overridden by OSGi.
In the platform, Euler infers continuously in an independent system thread. The
ontology is build from a set of files written in N3 and containing different kinds
of information; its update is reduced to files parsing and modification. There is
a file (skeleton.n3) constituted of the classes and properties that can be instan-
tiated in the whole system to represent the current contextual information. It is
the T-box of our ontological model, the highest level of modelling used in our sys-
tem, containing notably models of the physical environment, the users and their



behaviour, as well as the available categories of services. Another few files (let
us consider a merged example named environment.n3) contain the knowledge
coming from the environment discovery phase: e.g. actual users and their pro-
file, or sensors, devices and services along with their semantic profile. Two files
(rules.n3d and query.n3) contain the rules and queries necessary for the inference
process, thus centralize the application logic, which is the system context-aware
decision-making. Finally, a file named input.n3 is updated at run-time through a
dedicated interface to reflect the changes in the environment: real-time context
information, services or devices status, etc.

In order to ensure discovery and events exchange between the different bun-
dles in the platform, we are using the Device Profile Web Service (DPWS) proto-
col. DPWS uses several standards from the web services specification — namely
WSDL, WS-Discovery, WS-Eventing and SOAP — in order to advertise and
discover bundles, as well as for events exchange. Once a bundle representing
an entity in the environment is generated, it uses DPWS protocol to advertise
itself and send a description of his capabilities. A DPWS client bundle (Envi-
ronmentDiscovery) is in charge of discovering these bundles and updating the
environment.n3 file with a semantic description of their corresponding entity.
Interested bundles can then subscribe to events coming from the entity, for ex-
ample to update the input.n3 file. Euler parses all given N3 files, infer a high
level representation of users context, and then infer which services need to be
started or stopped, as well as on which devices they should be instantiated. This
decision is finally executed transparently through the ServiceControl bundle.

4.3 Validation: Prototype & Deployment

After a first implementation of the platform, a validating deployment process was
organized in collaboration with Peacehaven nursing home in Singapore. Peace-
haven is hosting elderly residents with mild dementia who need of a continuous
assistance from caregivers in order to perform their ADLs. The deployment of
our platform in the nursing home assists the residents with reminders to in-
crease their independence, as well as the caregivers by raising targeted noti-
fications when an abnormal situation is detected. Initially, a proof of concept
deployment was realized in May 2011 ending with a demonstration to the nurs-
ing home staff and management. We received good feedback about the features
and performance, and filed shortly after this an Ethics Approval application for
a real-world deployment with genuine residents. In August 2011, we received
the Ethics Approval and put in place a sub-part of the system for technological
real-world experimentation. This system’s pre-trial period started in November
2011, the specificity being that interaction is instantiated only with caregivers
so as to test the system without affecting residents with eventual false alarms.

Prototype Description The platform, described in Fig. 3, is running on a
tiny (115 x 115 x 35 mm, 505g) fanless debian machine, mounted with a 500MB
RAM/500Hz CPU, a 4GB Compact Flash drive, and a power consumption of
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Fig. 3. Hardware infrastructure & use-case of the deployed solution

only 5W. Sensors are using the ZigBee communication protocol on a wireless
sensor network based on Crossbow’s IRIS mote platform. A Crossbow node is
connected via serial port to the debian machine, serving as gateway. The com-
munication with other devices in the environment uses bluetooth for residents’
embedded speakers, a client-server communication based on Jabber over Wi-Fi
for the residents’ IPTV and the nursing console (Windows7 machine with touch-
screen) or 3G for the nurses’ smartphones (Samsung Galaxy S2 with Android
2.3 and Apple iPhone 4 with iOS 5). In this phase, we monitor two residents
wearing an RFID bracelet for identification, bluetooth speakers are deactivated
to avoid eventual trouble to the residents in case of a system malfunction. The
activities in the bathroom are monitored using shake sensors (accelerometers)
placed on the pipes to detect taps/shower usage. A shake sensor is also embedded
in the soap dispenser to detect soap usage during the shower. Motion sensors
(passive infrared) are positioned on the ceiling of both the bedroom and the
bathroom to detect presence and measure the amount of activity. The bedroom
also has pressure sensors (force sensing resistors) under the mattresses and an
RFID reader allowing the detection of residents and their identification. In the
following phases, it is planned to increase the number of rooms monitored to
reach a number of 10 residents, there are only 2 now.

In Figure 4, we illustrate our conception with a graphical representation of
our model (at T-box level). It is only a part of the whole ontological model in
use, simplified for readability and conciseness, thus containing only high-level



concepts related to the use-case and not to the internal reasoning process. This
model will then be populated with knowledge about the actual environment of
deployment, users and their profile, services activated, hardware deployed and
real-time knowledge derived from the sensor data concerning the activities of
the residents. In average, the T-box and A-box together constitute around 150
triples to be processed by the reasoner. Depending on the activated features,
this processing consists in 10 to 15 rules and queries. The rules used are similar
to the examples given below:

V Service s, Resident 7, Location I, Device dc, Activity a, Deviance da
(r hasContext da) N (s helpsWith da) = (s runningFor )
(s runningFor v) A (r locatedIn 1) A (dc deployedIn 1) = (s onDevice dc)
(r hasContext a) A (a needHands true) A (dc handheld true) = (dc fitted false)

The inferred knowledge is not to be used by any front-end application; it is rather
used for back-end decision making to provide services seamlessly. For the time-
being, context information is inferred from sensor stream by another module
using a business rule engine and then used to perform service and device selection
semantically. However, the ontological model is currently being extended to infer
contextual knowledge using our semantic engine, as defended by Chen et al. [5].

runningFor usedBy

Service

helpsWith | name

Person

| name

'snoozeTime | hasContext Context ! tmeSent i -
*********** ) | stage | Device
| name V> 1

 name
| handheld

| needHands

[Caregiver] [ Resident ]

| busy || stageForAlert

hasSolvingContext

Reminder
| ackHandled

escalateTo | acknowledgement |

Activity

watchesAfter

Deviance

I solved

Location

Fig. 4. Ontological sub-model for elderly assistance in a smart space

In Peacehaven nursing home, three services have been running for six months
at the time of writing. These services have been designed in collaboration with
the nursing staff to respond to the specific needs of the residents who agreed
to test the system. These services are monitoring deviances (i.e. problematic
behaviours) that are the most likely to lead to a fall. On one side, there are
bathroom activities where the space is narrow and ground wet, with notifications
being raised when a resident has been showering for an unusual time or when
he forgets to turn off the tap of the basin. And on the other side, we raise a
notification when a resident is detected to be wandering during the night.



Prototype Performance The first aspect in which we wish to judge the sys-
tem performance is regarding its uptime. In this aspect, we learnt a lot from our
deployment in Peacehaven and highlighted the main areas, summarized in Figure
5, in which the platform had to be improved. We worked hard on improving these
aspects and were able to improve the average uptime, from 3 days in Decem-
ber 2011 to 11 days in May 2012. The more technical errors were considerably
reduced and the challenge today concerns the 12% of reasoning failure, mostly
due to our implementation, rather than the reasoner itself. We are currently
reimplementing Euler’s module, to improve on this aspect.
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Fig. 5. Pie chart for system crash reasons in Peacehaven

During the trial period, we compute some figures to validate the platform’s
performance in term of accuracy and timeliness. Results are given based on the
analysis of the logs for the two bathroom services described above, during an
uptime period of nine days. We consider atomic events first — e.g. the use of
taps and shower — which happened 34 times a day in average with a recognition
accuracy of 71%. This was obtained by comparing the system log files with
a manual record of activities provided by the nurses each time they had an
intervention in the room. Complex events — that correspond to deviances and
services provision — happened 7 times a day in average, with an accuracy of
service delivery of 70%. This accuracy characterises the ratio between the number
of times a service was delivered over the number of times it was needed. As
complex events are derived from atomic events, we conclude that little error is
introduced by the event mining (reasoning) itself. Finally, the system’s reaction
time, calculated between the time a service is needed and the time it is delivered
in the environment, has an average of 2.713s, which has been refined in 1.226s for
Euler module’s processing itself, 0.735s for the communication between modules
and 0.752s for the processing due to other miscellaneous bundles.

The last aspect considered to estimate the performance is the time needed to
set-up the system into a new environment. Indeed, our goal was to build a more
flexible system that can adapt to different environments and needs. Therefore,



we have analysed the time needed to adapt the operational platform to a new
use-case, counting on a team of 2 engineer-researchers. With the imperative
approach used before our adoption of semantic technologies, the first reasoner
was written in 5 days and its subsequent adaptation took 3 days. We then needed
several months to build the first semantic version of the platform. As we were not
experienced, we had to discover the existing tools, as well as build the required
models. The subsequent adaptation to a new deployment with its specificities
took us only 2 to 3 hours, mostly to adapt the model. In our semantic platform,
rules and thus the system logic are kept unchanged.

Of course, the aim here is not to compete with commercial systems on the
real-time performance but to validate that more versatile solutions driven by
semantic web technologies are an option with a sufficient performance, as ob-
served in a real-life deployment. In this aspect, the results obtained are judged
satisfactory for a first, unoptimized implementation.

5 Conclusion

In this paper, we have highlighted how AAL solutions can leverage semantic
web technologies in order to enhance their modularity and versatility. AAL can
indeed be driven towards a more flexible deployability by using semantic web
technologies with a double role of inference engine and integrating abstraction
layer. Reflecting on a year of trying out existing inference engines, we have given
our take on the requirements for a semantic reasoner to be used efficiently in AAL
use-cases. Some reasoners that we tested have then been compared with regard
to the mentioned requirements and our choices justified. Finally, the conception
and validation phases for the integration of the reasoner have been described
and some results provided.

Although the tools available are not always fitting well with the AAL use-
case, we observed the important contributions of semantic web technologies to
this field. We are still designing and implementing some features made possible
through the semantic web in order to enhance the flexibility of our solution.
Among others we are planning to create a smart-space composer helping at the
deployment step to configure the system, on one hand by making possible a rich
semantic characterization of the deployed entities, and on the other hand by
generating a specific inference rule-set from a set of abstracted meta-rules and
the entire semantic characterization of the specific environment.
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