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Abstract. Biomedical ontologies have become a mainstream topic in
medical research. They represent important sources of evolved knowl-
edge that may be automatically integrated in decision support methods.
Grounding clinical and radiographic findings in concepts defined by a
biomedical ontology, e.g., the Human Phenotype Ontology, enables us
to compute semantic similarity between them. In this paper, we focus
on using such similarity measures to predict disorders on undiagnosed
patient cases in the bone dysplasia domain. Different methods for com-
puting the semantic similarity have been implemented. All methods have
been evaluated based on their support in achieving a higher prediction
accuracy. The outcome of this research enables us to understand the fea-
sibility of developing decision support methods based on ontology-driven
semantic similarity in the skeletal dysplasia domain.

1 Introduction

Similarity plays a central role in medical knowledge management. Like most
scientific knowledge, medical knowledge is also inferred from comparing different
concepts (such as phenotypes, populations, and species) and analyzing their
similarities and differences. However, medical science is unlike other sciences
in that its knowledge can seldom be reduced to a mathematical form. Thus,
medical scientists usually record their knowledge in free form text, or lately
in biomedical ontologies. New concepts that emerge in the domain are firstly
compared and judged based on their degree of similarity to existing concepts
before being integrated into the overall domain knowledge.

Biomedical ontologies are knowledge bases that have emerged and evolved
over time following this process. Most of them are used not only to model and
capture specific domain knowledge, but also to annotate, and hence enrich,
diverse resources like patient cases or scientific publications. The adoption of
biomedical ontologies for annotation purposes provides a means for comparing



medical concepts on aspects that would otherwise be incomparable. For exam-
ple, the annotation of a set of disorders (directly or via patient cases) using
the same ontology enables us to compare them, by looking at the underpinning
annotation concepts. The actual comparison is subject to a semantic similarity
measure, i.e., a function that takes two or more ontology concepts and returns
a numerical value that reflects the degree of similarity between these concepts.

Over the course of the last decade, there has been significant research per-
formed on semantic similarities over biomedical ontologies. One key remark that
needs to be taken into account is that meaningful similarity measures are de-
pendent on the domain knowledge, as only by using the explicit semantics of
the domain one can compare concepts in an appropriate manner. In this paper
we report on our experiences with using semantic similarity over domain knowl-
edge and annotated patient cases for disorder prediction in the skeletal dysplasia
domain.

Skeletal dysplasias are a group of heterogeneous genetic disorders affecting
skeletal development. There are currently over 450 recognised bone dysplasias,
structured into 40 groups. Patients suffering from such disorders have complex
medical issues, ranging from bowed arms and legs to neurological complications.
Since most dysplasias are very rare (< 1:10,000 births), data on clinical presen-
tation, natural history and best management practices is very sparse. A different
perspective on data sparseness is introduced also by the small number of clinical
and radiographic phenotypes typically exhibited by patients from the vast range
of possible characteristics globally associated with these disorders.

Decision support methods can usually assist clinicians and researchers both
in the research, as well as in the decision making process, in general, in any
domain. However, building efficient or meaningful decision support methods in
a domain affected by data sparseness, such as bone dysplasias, is a very chal-
lenging task. On the other hand, semantic similarity measures can facilitate the
objective interpretation of clinical and radiographic findings by using knowledge
captured in biomedical ontologies or annotated patient cases to provide decision
support. In this paper we aim to bridge the two worlds, by investigating different
approaches for determining the semantic similarity between sets of phenotypes
encoded as ontological concepts and its application to disorder prediction.

The context of our work is provided by the SKELETOME project that de-
velops a community-driven knowledge curation platform for the bone dysplasia
domain [1]. The underlying foundation of the platform is a two-phase knowl-
edge engineering cycle which enables: (1) semantic annotation of patient cases
— connecting domain knowledge to real-world cases; and (2) collaborative di-
agnosis, collaborative knowledge curation and evolution — evolving the domain
knowledge, based on real-world cases. The semantic annotation process relies on
clinical and radiographic findings grounded in the Human Phenotype Ontology
(HPO) [2] — an emerging de facto standard for capturing, representing and anno-
tating phenotypic features encountered in rare disorders. At the same time, the
domain knowledge is modeled via the Bone Dysplasia Ontology (BDO) [3], which



at a conceptual level associates bone dysplasias and phenotypes represented by
HPO terms.

These two sources of knowledge, i.e., domain knowledge from BDO and raw
knowledge from annotated patient cases, together with the structure of HPO,
which underpins the formalization of phenotypes, enable us to investigate the use
of several semantic similarity measures in order to achieve disorder prediction.
More concretely, this paper: (i) analyzes which semantic similarity performs
better on each of the two types of data, and (ii) performs an extensive empirical
evaluation of the application of these semantic similarities for disorder prediction,
using a real-world dataset.

The remainder of the paper is structured as follows: Section 5 discusses exist-
ing related work, Section 2 provides a comprehensive background on the knowl-
edge and data sources used within our experiments, while Section 3 details our
methodology. Before concluding in Section 6 we present an extensive evaluation
and discuss the experimental results in Section 4.

2 Background

This section provides a brief overview of the background of our work. It intro-
duces the Human Phenotype Ontology (HPO) and discusses some of its char-
acteristics (Section 2.1), then describes the two knowledge sources used in our
experiments, i.e., the Bone Dysplasia Ontology and the largest bone dyspla-
sia patient dataset (Section 2.2) and finally, presents briefly some of the most
commonly used similarity measures (Section 2.3).

2.1 Human Phenotype Ontology

The Human Phenotype Ontology * is a controlled vocabulary that captures
and represents clinical and radiographic findings (or phenotypes in general), in
principle, in hereditary diseases listed in Online Mendelian Inheritance in Man
(OMIM) database °. The ontology consists of around 9,000 concepts describing
modes of inheritance, onset and clinical disease courses and phenotypic abnor-
malities. This last category represents around 95% of the ontology and is the
main subject of our study. Phenotypic abnormalities are structured in a hierar-
chical manner (via class—subclass relationships) from generic (e.g., HP_0000929
— Abnormality of the skull) to specific abnormalities (e.g., HP_0000256 — Macro-
cephaly).

One aspect that needs to considered when using the structure of HPO is
the multiple inheritance. All children of a particular class share some informa-
tion (which is logical in a typical ontology), however, the type of this shared
information (i.e., not the specific information) can be different. More concretely,
abnormalities may share their anatomical localization or they may share the

4 http://www.human-phenotype-ontology.org/
® http://www.omim.org/
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Fig. 1. An example of multiple inheritance in HPO (arrows denote class—subclass re-
lations).

intrinsic type of abnormality. Fig. 1 depicts an example of such multiple inher-
itance. HP_0009244 (Distal/middle symphalangism of 5th finger) is a sibling of
HP_0009178 (Symphalangism of middle phalanz of 5th finger) — they represent
the same type of abnormality, i.e., Symphalangism, and hence are both chil-
dren of HP_0004218 (Symphalangism of the 5th finger), but also a sibling of
HP_0009240 (Broad distal phalanz of the 5th finger) — they share the anatomi-
cal localization of the abnormality, and hence are both children of HP_0004225
(Abnormality of the distal phalanz of the 5th finger). This remark is important
because it influences the computation of the most specific common ancestor for
two concepts, a central element of most semantic similarity measures.

2.2 Bone dysplasia knowledge sources

As mentioned in Section 1, in the context of the SKELETOME project, we have
two major knowledge sources: the Bone Dysplasia Ontology (BDO) ¢ and a set
of semantically annotated patient cases. The clinical and radiographic findings
that characterize both are underpinned by the Human Phenotype Ontology.
BDO has been developed to model and capture essential (and mature) knowl-
edge in the skeletal dysplasia domain. As depicted in Fig. 2, it associates bone
dysplasias to gene mutations and phenotypic characteristics, which are then fur-
ther specialised via concepts defined by external ontologies, such as HPO. In [3]
we provide a comprehensive overview of the design process of BDO. With re-
spect to the work described in this paper, there is one remark that is worth
being noted. BDO describes associations (via class axioms) between more than
250 disorders (out of the 450 in total) and around 2,000 findings (represented by
HPO concepts). These associations have been created from the clinical synopses
of the corresponding disorders in OMIM and represent, in principle, the current
state of conceptual understanding of their clinical manifestations. As a result,
the phenotypic findings listed there are a mixture of more generic (e.g., abnormal

S http://purl.org/skeletome/bonedysplasia
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Fig. 2. A snapshot of the Bone Dysplasia Ontology from [1].
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Fig. 3. A snapshot of the Patient Ontology from [1].

femoral neck) and fairly specific (e.g., short, broad femoral neck) terms. This re-
flects the balance achieved by capturing both the clinical interpretation of sets of
patient cases (for the more common disorders), as well as singular or particular
patient cases (for those that are extremely rare).

In addition to the domain knowledge, SKELETOME focuses also on cap-
turing instance data, i.e., annotated patient cases. The actual modeling is done
via the Patient Ontology (depicted in Fig. 3), which associates patients to clin-
ical and radiographic findings, gene mutations and bone dysplasias. The main



source of patient data is the registry of the European Skeletal Dysplasia Network
(ESDN) 7, which is a pan-European research and diagnostic network aimed to
provide community driven help and diagnostic expertise for rare bone disorders.
Our current dataset comprises a total of 1,200 semantically annotated closed
ESDN cases. Each patient case has been modeled using the Patient Ontology
and captures HPO concepts denoting clinical and radiographic findings and BDO
dysplasias denoting the final diagnosis. In contrast to the knowledge in BDO,
the level of specificity present in the clinical descriptions is, as expected, fairly
high, i.e., the general tendency is to find more specific findings rather than more
generic ones.

2.3 Semantic similarity

As mentioned earlier, there has been a great amount of research done on semantic
similarities. Here, we intend only to introduce some basic concepts and to provide
a brief overview of the measures used within our experiments. A detailed survey
on semantic similarity on biomedical ontologies can be found in [4].

There are two main types of semantic similarities: (1) node-based similarities
and (2) edge-based similarities. The former uses nodes and their properties as
information source, whereas the latter focuses on edges and their types.

Node based approaches rely on the notion of Information Content (IC) to
quantify the informativeness of a concept. IC values are usually calculated by
associating probabilities to each concept in ontology by computing the negative
likelihood of its frequency in large text corpora. The basic intuition behind the
use of the negative likelihood in the IC calculation is that the more probable
the presence of a concept in a corpus is, the less information it conveys. IC is
expressed in Eq. 1, with p(c) being the probability of occurrence of ¢ in a specific
corpus. In our case p(c) represents the probability of occurrence of an HPO
concept in the context of a bone dysplasia, either from the domain knowledge,
or from the raw patient cases.

The foundational node based similarity measures are Resnik [5], Lin [6] and
Jiang and Conrath [7]. Resnik was the first to leverage IC for computing semantic
similarity and expressed semantic similarity between two terms as the IC of
their most informative common ancestor (MICA — Eq. 2). The intuition is that
similarity depends on the amount of information two concepts, ¢; and ¢y, share.
This, however, does not consider how distant the terms are in their information
content and from a hierarchical perspective. Consequently, Lin (Eq. 3) and Jiang
and Conrath (Eq. 4) have proposed variations of Resnik’s similarity to take into
account these aspects.

1C(¢) = —logp(c) (1)

siMmpes(c1,c2) = IC(epmrca) (2)

" http://www.esdn.org



’ 2% IC(cprca)
simrin(c1,c2) = IC(c1) + IC(c2) @

Sich(cl,CQ) =1- IC(Cl) =+ 10(02) — 2 % IC(C]\/[ICA) (4)

Edge-based approaches take into account the paths existing between the
concepts in the ontology. Subject to the domain and ontology, such paths could
be considered by following is-a relationships (the most common approach) or
other types of relationships defined by the ontology. Examples of such similarity
measures include: (i) Wu & Palmer [8] (Eq. 5), where LCS is the least common
subsumer of ¢; and ¢y and Nj is the length of the path from ¢; to root, N
the length of the path from cs to root and N3 the length of the path from LCS
to root; or (ii) Leacock-Chodorow [9] (Eq. 6), where D is the overall depth of
the ontology. A more recent measure has been described in [10] and considers,
among other aspects, the number of changes in direction of the shortest path
between two concepts (i.e., how many times on the shortest path the traversing
direction changes from child to parent and vice-versa).

2*N3

simwgp(c1,c2) = N; + Ny + 2% Nj )

len(cy, c2)

2xD (6)

A third category of similarity measures could be considered for the hybrid
approaches, i.e., combining node and edge-based similarities (e.g., [11] or [12]).
Our work aims to integrate both information content and structural relationships
in order to gain as much as possible from the semantics provided by HPO.
As described in the following section, we also propose a series of such hybrid
measures tailored on specific requirements emerged from our knowledge sources.

simrgc(cr,ce) = —log

3 Methodology

The goal of our work is to predict disorders given an annotated patient case de-
scription. More concretely, given a background knowledge base (i.e., BDO or the
annotated patient dataset) and a set of HPO concepts (representing clinical and
radiographic findings of a new patient case), we aim to predict the most plausible
bone dysplasias, ranked according to their probability. This is a typical multi-
class classification problem, however, due to data sparseness that characterises
the skeletal dysplasia domain, typical Machine Learning algorithms achieved a
very low accuracy 8. Our intuition is that by using semantic similarity measures
on patient findings (i.e., HPO concepts) we are able to leverage and use intrinsic
associations between phenotypes that cannot, otherwise, be acquired by typical

8 A series of classification experiments we have performed revealed a maximal accuracy
of around 35% for Naive Bayes, in a setting in which we have considered only six
disorders, i.e., those that had more than 20 cases.
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Fig. 4. Block diagram of the prediction methodology.

Machine Learning methods (due to their term-based matching process). As an
example, if the background knowledge base lists HP_0000256 (Macrocephaly) as
a phenotype of Achondroplasia and a new patient exhibits HP_0004439 ( Cran-
iofacial dysostosis) we want to use the semantic similarity between HP_0000256
and HP_0004439 to also associate the later to Achondroplasia with a certain
probability ?. The semantic similarity between the two concepts could be inferred
via their most common ancestor HP_0000929 (Abnormality of the skull). Such
an association is not possible when employing typical Machine Learning meth-
ods since each term would be considered individually and only in the context
provided by the background knowledge base.

Fig. 4 depicts the overall methodology. In the first step, we compute the
semantic similarity between all HPO concepts representing clinical and radio-
graphic findings of the given patient case and all phenotypes associated with
bone disorders in the background knowledge base (please note that we do not
make any assumptions about the background knowledge base). If we consider
{81, Sa, ..., Su} to be patient findings and {Py, Pa, ..., P,} phenotypes of
bone dysplasia D, the best similarity match between .S; and D is given by:

BestMatch(S;, D) = argmax{sim(S;, Pj)} (7)
j=1

The semantic similarity in Eq. 7 can be any of the classical similarities men-
tioned in Section 2 or, for example, one of the measure we introduce later in
this section. The evaluation described in Section 4 has been performed on mul-
tiple such similarity measures. Once the best matches have been computed, we
calculate the final probability by aggregating them:

1 n
P(S1,8,...,8a|D) = — > " BestMatch(S;, D) (8)

i=1

9 As aremark, there is no direct relationship in HPO between the concepts HP_0000256
and HP_0004439. A relationship exists only via the parent of HP_0000256 (i.e.,
HP_0000240 — Abnormality of skull size), which is a sibling of HP_0004439



As mentioned previously, a good semantic similarity measure needs to take
into account the specific aspects of the target domain. Below we have summarized
a series of requirements for the similarity measure that have emerged from the
bone dysplasia domain and the structure of HPO:

— Given two HPO concepts and their LCA (lowest common ancestor), we con-
sider the concept closer to the LCA to be more similar to the LCA than the
concept located at a bigger distance. E.g., HP_0004439 ( Craniofacial dysos-
tosis) will be considered more similar to HP_0000929 (Abnormality of the
skull) than HP_0000256 (Macrocephaly), because it is a direct descendent of
HP_0000929;

— The information content of an LCA is dependent on its specificity (i.e., its
location in the overall hierarchy). More concretely we consider the more
specific LCA to be more informative. E.g., HP_0004439 ( Craniofacial dysos-
tosis) (as an LCA) should be considered more informative than HP_0000929
(Abnormality of the skull), which is in this case, its direct parent.

— A smoothing parameter may be required to deal with missing LCA infor-
mation content. As described in [12], one of the main issues of IC is that
its values are derived by analyzing large corpora (in our case a given back-
ground knowledge base), which may not even contain certain concepts. This
is also the case with LCAs computed on certain pairs of findings, aspect
dependent on the background knowledge base. Unfortunately, neither the
intrinsic information content defined in [13], nor the extended information
content defined in [12] can be employed in our domain, because we need the
IC of a concept to be defined in the context of a given disorder (see below)
and not only based on its children or surrounding concepts in the ontology.
In other terms, we cannot use only the local IC definition provided by HPO
without the scope provided by and associated disorder.

In addition to these requirements, we need to define the Information Content
(IC) of a finding in the context of a disorder. Independently of the background
knowledge base used for experiments, we have considered IC(Cp) (i.e., the IC
of the concept C grounding phenotype P) to be:

(9)

where Npp represents the number of disorders associated with P and Np is the
total number of disorders.

In the following we define a series of hybrid semantic similarities that take
into account the above listed requirements.

HSS1 quantifies the semantic similarity between concepts according to the
information content of the LCA and the position of LCA in regards to the
concepts. HSS1 neglects the specificity of LCA.

Any — Node — Based — Similarity
HSS1 = 1
SSUC, C) DIST(Cy, LCA) + DIST(Cy, LCA) (10)




where DIST(C,C) = 0 and DIST(Cy,Cs) = len(SPath(C1,Cs)) (SPath =
shortest path).
For example, HSS1 used with Resnik (simpes) would be:

IC(LCA)
HSS1 = 11
S5, ) DIST(Cy, LCA) + DIST(Cy, LCA) (11)
HSS2 introduces the specificity of LCA, however, it neglects the missing

LCA information content. HSS2 is defined below.

HSS2(Cy, Co) = % « HSS1 (12)

where L is the length of the path from the root to LCA and D is the depth
of the ontology.

HSS3 and HSS4. In order to fulfil the last requirement, we have exper-
imented with two additional measures (HSS3 and HSS4 defined below), that
introduce different smoothing parameters: HSS3 uses a constant K, where K =
1/Np (Np = total number of disorders), while HSS4 considers a joint informa-
tion content of the two concepts.

L
= * (IC(LCA) + K)

HSS3(Ch,Co) = DIST(Cy, LCA) + DIST(Cy, LCA) (3

1C(C) * IC(Cs)

L
— x (IC(LCA) +
HSS4(Cy,Cp) = 2 (Ie(rea) 10(01)+IC(C2)) (14)
b2 T " DIST(Cy, LCA) + DIST(Cy, LCA)

4 Experimental results

Taking into account the context provided by the SKELETOME project, i.e., a
platform used by clinicians, we have tested the disorder prediction on a sub-
set of the patient dataset described in Section 2. We performed three different
experiments, described in the following:

— Firstly, we used a part of the patient dataset as knowledge source,

— Secondly, we used the Bone Dysplasia Ontology as knowledge source,

— Thirdly, we compared the semantic similarity-based prediction against a
term matching-based prediction (i.e., an approach that uses only the fre-
quency of the patient findings in the context of each disorder).

Each experiment tested different semantic similarity measures (applied in
a HPO concept to concept setting). To assess the efficiency provided by the
semantic similarity, we have calculated the overall accuracy of the disorder pre-
diction. Node-based similarities have used the information content calculated on
the background knowledge used in the experiment (i.e., IC on BDO or on patient
cases), while the hybrid similarities have used both this information content and
the structure of HPO.



Table 1. Experimental results of disorder prediction using patient cases as background
knowledge.

Similarity| A@1 (%)]A@2 (%)[A@3 (%)|A@4 (%)[A@5 (%)

Resnik| 10.96 21.92 32.88 35.62 41.10

Lin| 6.85 12.33 17.81 28.77 34.25

J&C|  2.74 9.59 12.33 13.70 20.55

HSS1| 31.51 46.58 54.79 64.38 71.23
HSS2| 32.87 49.32 56.16 64.38 69.86
HSS3| 39.73 | 52.05 | 61.64 | 69.86 | 75.34
HSS4| 39.73 52.05 60.27 68.49 73.97

In Section 2 we have discussed some of the foundational differences between
the two knowledge sources with respect to the phenotypes’ specificity. Another
aspect that needs to be mentioned is that, since the raw knowledge we are
using emerges from real patient cases, it will contain clinical and radiographic
features that are directly related to the disorder, but also phenotypes that are
not necessarily relevant. This is a normal phenomenon, because clinicians record
all their findings before considering a diagnosis. For example, a clinical summary
may contain findings such as, bowed legs, macrocephaly and cleft palate, which are
relevant for the final Achondroplasia diagnosis, but it may also contain fractured
femur and decreased calcium level, which are not relevant in the context of the
final diagnosis. The set of unrelated findings are termed as noise.

Noise is the one of the most important contributing factors to the prediction
accuracy, and it is inverse proportional to it. Hence, the prediction accuracy
depends on the noise introduced both by the background knowledge, as well
as the test data. As we are considering both the domain knowledge (via BDO)
and patient cases as background knowledge bases in two different assessments,
we will be able to judge which of the two types of knowledge contains more
noise. This is realized by testing both on the set test dataset and comparing the
resulted accuracy.

In all experiments detailed below we compute the prediction accuracy as the
overall percentage of correctly predicted disorders at a given recall cut-off point
(i.e., by taking into account only the top K predictions, for different values of
K, where K is the recall cut-off point). Hence, a success represents correctly
predicted disorder (the exact same, and not a sub or super class of it), while
a miss represents an incorrectly predicted disorder. If N is the total number of
test cases and L is the number of corrected predicted disorders, then Accuracy
A = L/N. This is expressed in percentages in Tables 1, 2 and 3.

4.1 Experiment 1: Patient data as knowledge base

This first experiment considers patient cases as background knowledge. As dis-
cussed in Section 2, we collected a dataset of 1,200 patient cases from ESDN and
annotated them with HPO terms. In order to provide an accurate view over the



Table 2. Experimental results of disorder prediction using BDO as background knowl-
edge.

Similarity| A@1 (%)]A@2 (%)[A@3 (%)|A@4 (%)[A@5 (%)

Resnik|  2.74 £.10 4.10 6.84 8.21
Lin| 1.37 2.74 2.74 4.10 4.10

J&C| 0 0 0 0 0
HSS1| 16.43 21.91 32.87 43.84 | 47.95
HSS2| 10.96 16.43 17.80 24.66 27.40
HSS3| 10.96 16.44 19.18 23.29 27.40
HSS4| 10.96 17.80 19.18 21.92 28.77

prediction, the experiment has been performed as a 5-fold cross validation with
an 80-20 split (80% knowledge base, 20% test data). Table 1 lists the resulted
average accuracy at five different recall cut-off points.

Overall, HSS3 has performed the best in this experiment, more or less on
par with HSS4, and has confirmed that it is important for all three requirements
listed in Section 3 to be fulfilled. Moreover, this experiment shows the improve-
ment brought by a hybrid method over traditional information content based
approaches. HSS1 outperforms the IC-based similarities because it considers the
distance to the LCA and not only the IC of the LCA — i.e., the closer the two
terms are to the LCA (and implicitly between them) the more similar they are.
At the same time, HSS3 outperformed HSS1 because it smooths the missing
information content, while at the same time introducing the specificity (L/D)
— which is characteristic to the background knowledge. Finally, the similarity
between HSS3 and HSS4 (that can also be observed in experiment 2) shows
that the parameter K = 1/Np is a good approximation of the joint information
content of the two concepts.

4.2 Experiment 2: BDO as knowledge base

The second experiment evaluated the disorder prediction with BDO as back-
ground knowledge. We have performed the same rounds of experiments as in the
first case, i.e., we tested the prediction accuracy for the exact same 5 test folds
resulted from experiment 1 and computed the final average accuracy for each
semantic similarity. Results are listed in Table 2.

As in the case of the first experiment, all hybrid similarities outperformed the
classical information content approaches. This time, however, HSS1 has achieved
the best result, proving that the HPO concepts captured by BDO are more
generic, as we have expected. The specificity factor L/D in HSS2, HSS3 and
HSS4 takes low values because L is generally smaller (i.e., terms are located
higher in the hierarchy and hence more generic) which leads to smaller values for
these measures. This is also the reason why, the same similarities have performed
worse when BDO was considered background knowledge, as opposed to using
patient cases as background knowledge. The specificity of the ancestor improves



Table 3. Experimental results on term matching vs. semantic similarity.

Method‘A@l (%)\A@z (%)\A@:s (%)\A@4 (%)\A@5 (%)\
Patient cases as background knowledge

Term matching| 26.02 38.36 50.68 56.16 61.64
Semantic similarity| 39.73 52.05 61.64 69.86 75.34

BDO as background knowledge
Term matching 8.21 15.06 21.91 26.02 274
Semantic similarity| 16.43 21.91 32.87 43.84 47.95

the accuracy on patient cases but it decreases it on domain knowledge. Finally, a
different reason for the lower accuracy is the multiple inheritance used in HPO,
which leads to additional missing information content for LCAs.

4.3 Experiment 3: Term matching vs. semantic similarity

Finally, in order to gain insight in the importance of using semantic similar-
ity measures in disorder prediction, we have compared the results of the best
performing similarity for each background knowledge against prediction calcu-
lated on term-based matching. Firstly, the results listed in Table 3 show that
using semantic similarity is generally a good strategy as the overall accuracy is
improved when compared to term-based matching, independently of the back-
ground knowledge. Interestingly, in this comparison, the specificity factor that
heavily influences the accuracy based on the background knowledge has proved
to be beneficial in the context of BDO, when compared against term matching.
Secondly, returning to the comparison based on background knowledge, we can
conclude that the domain knowledge introduces more noise than patient cases,
which seems to contradict our initial belief (since clinicians will list in a case
all observed findings, including those that may turn out to be irrelevant for the
final diagnosis). In reality, in this case we are dealing with a different kind of
noise, as the domain knowledge has the tendency to dilute the discriminatory
findings when aggregating the information resulted from analyzing groups of pa-
tients. We intend to deal with this issue by including knowledge on differential
diagnosis in the Bone Dysplasia Ontology.

5 Related Work

The research presented in [14] is the most relevant related work in the context
of this paper. Kohler et al. have developed a semantic similarity search applica-
tion named Phenomizer, which takes as input a set of HPO terms and returns
a ranked list of diseases from OMIM, to their semantic similarity values. Phen-
omizer uses the Resnik semantic similarity and arithmetic mean as aggregation
strategy (similar to our approach). According to the experiments discussed in



the paper, their solution outperforms term-based matching approaches that do
no consider any relationships between terms. Our research follows closely the
work done in Phenomizer, however, we use real patient data to test the disorder
prediction (as opposed to the synthetically generated data in their case), and
we try to tailor the semantic similarity to map onto the requirements emerging
from the domain. Furthermore, we test several semantic similarities in order to
get a better understanding of the most appropriate combination that serves our
prediction goal. Finally, we evaluate the prediction accuracy using two types of
background knowledge — domain and raw knowledge, as opposed to only domain
knowledge in their case.

Additional related work includes [15], where the authors use a threshold of
lowest semantic similarity value to find best-matching term pairs with the goal
of predicting molecular functions of genes in Gene Ontology (GO) [16] annota-
tions. Similar to our work, the authors tailor the semantic similarity measures
according to fit the structure of GO and their application requirements. Lei et
al. [17] assess protein similarity within GO to predict the subnuclear location.
They compared the prediction accuracy of several similarity measures, includ-
ing classical ones such as Resnik, and term-based matching to find insignificant
differences between them. The authors also evaluate several aggregation strate-
gies for the similarity values (e.g., sum, average, multiplication) and have found
that the sum of the term-based matching method produces the best predictive
outcome. Subnuclear location of a gene is associated with specific GO terms in
most of the cases. As a result, using the hierarchical structure of the ontology
via semantic similarity methods may not bring significant improvements.

In [18], the authors use ontological annotations and a proposed semantic
similarity measure to find a correlation between protein sequence similarity and
semantic similarity across GO. Similarly, Washington et al. [19] investigate the
ontological annotation of disease phenotypes and the application of semantic
similarities to discover new genotype-phenotype relationships within and across
species. Finally, Ferreira et al. [20] use semantic similarity measures to classify
chemical compounds and have showed that employing such techniques improves
the chemical compound classification mechanisms. To achieve this, they em-
ployed measures tailored on the semantics of the Chemical Entities of Biological
Interest Ontology (ChEBI).

6 Conclusion

In this paper we have reported on our experiences in using semantic similarity
measures for disorder prediction in the skeletal dysplasia domain. The SKELE-
TOME project provides two types of knowledge sources: (1) domain knowledge,
modeled by and captured in the Bone Dysplasia Ontology and (2) raw knowledge
emerging from patient cases. In both cases the clinical and radiographic find-
ings are grounded in Human Phenotype Ontology concepts. The data sparseness
that characterises this domain required us to consider alternative approaches in
performing disorder prediction. Hence, we took advantage of the semantics pro-



vided by HPO and experimented with different semantic similarity measures,
using both types of knowledge sources.

The experimental results have led to the conclusion that applying only infor-
mation theoretic approaches in computing semantic similarity over the Human
Phenotype Ontology, in our domain, does not provide the optimum result. In-
stead, we need to take into account particular requirements that emerge from the
data characteristic to the bone dysplasia domain, i.e., a combined path between
findings and their common ancestor, the specificity of this common ancestor and
a smoothing parameter for the cases when the information content of the com-
mon ancestor is missing. Another conclusion of our experiments has been the
need for differential diagnosis information in the domain knowledge in order to
increase the weight of the discriminatory findings. Finally, we have shown that
using semantic similarities improved the prediction accuracy when compared to
term-based (frequency) matching prediction.
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