
Evaluation of techniques for inconsistency handling in
OWL 2 QL ontologies

Riccardo Rosati, Marco Ruzzi, Mirko Graziosi, Giulia Masotti

DIAG, Sapienza Università di Roma
Via Ariosto 25, I-00185 Roma, Italy

Abstract. In this paper we present the Quonto Inconsistent Data handler (QuID).
QuID is a reasoner for OWL 2 QL that is based on the system Quonto and is able
to deal with inconsistent ontologies. The central aspect of QuID is that it imple-
ments two different, orthogonal strategies for dealing with inconsistency: ABox
repairing techniques, based on data manipulation, and consistent query answer-
ing techniques, based on query rewriting. Moreover, by exploiting the ability of
Quonto to delegate the management of the ABox to a relational database system
(DBMS), such techniques are potentially able to handle very large inconsistent
ABoxes. For the above reasons, QuID allows for experimentally comparing the
above two different strategies for inconsistency handling in the context of OWL
2 QL. We thus report on the experimental evaluation that we have conducted us-
ing QuID. Our results clearly point out that inconsistency-tolerance in OWL 2
QL ontologies is feasible in practical cases. Moreover, our evaluation singles out
the different sources of complexity for the data manipulation technique and the
query rewriting technique, and allows for identifying the conditions under which
one method is more efficient than the other.

1 Introduction

One of the most important current issues in OWL ontology management is dealing with
inconsistency, that is, the presence of contradictory information in the ontology [8]. It
is well-known that the classical semantics of OWL and Description Logics (DL) is not
inconsistency-tolerant, i.e., it does not allow for using in a meaningful way any piece
of information in an inconsistent ontology. On the other hand, the size of ontologies
used by real applications is scaling up, and ontologies are increasingly merged and
integrated into larger ontologies: the probability of creating inconsistent ontologies is
consequently getting higher and higher (see e.g. [4]).

In this paper we focus on ABox inconsistency, i.e., the case of inconsistent ontolo-
gies where the TBox (intensional part of the ontology) is consistent, while the ABox
(extensional part of the ontology) is inconsistent with the TBox, i.e., a subset of the
assertions in the ABox contradicts one or more TBox assertions.

We follow an approach that is formally based on inconsistency-tolerant semantics;
such semantics overcome the limitations of the classical DL semantics in inconsistency
management. In particular, we consider inconsistency-tolerant semantics for general
DLs recently proposed in [5], called IAR semantics, for which reasoning has been
studied in the context of the Description Logics of the DL-Lite family, and in particular

the DL DL-LiteA, that underlies the OWL profile OWL 2 QL. The IAR semantics is
centered around the notion of ABox repair, which is a very simple and natural one: the
ABox repair of a DL ontology is the intersection of all the maximal subsets of the ABox
that are consistent with the TBox.

Recently, two different methods for reasoning under the IAR inconsistency-tolerant
semantics have been studied: techniques based on the computation of the ABox repair
(ABox cleaning) and techniques based on a tranformation of the queries posed to the
(possibly inconsistent) ontology (consistent query rewriting). In particular, in [5] it was
proved that computing the ABox repair of a DL-LiteA ontology under the IAR se-
mantics is a tractable problem. Then, in [6] a technique for query answering under
IAR-semantics in DL-LiteA is presented: instead of modifying the ABox, this method
is based on computing a rewriting Q′ of the initial query Q and then evaluating the
query Q′ with respect to the original ABox.

We argue that the results of [5, 6] are potentially very important from the practical
viewpoint, for the following reasons: (i) they are based on formally grounded notions
of inconsistency-tolerant semantics; (ii) they identify (to the best of our knowledge) the
first inconsistency-tolerant semantics in DLs for which query answering is tractable. So,
based on such results, in principle it might be possible to define practical algorithms for
handling inconsistency in OWL 2 QL.

This paper starts from the above results, and tries to provide an experimental eval-
uation and comparison of both the ABox cleaning approach and the consistent query
rewriting approach mentioned above. In particular, our main goal was to address the
following fundamental questions: (i) is ABox cleaning a feasible technique? (ii) is con-
sistent query rewriting a feasible technique? (iii) under which conditions consistent
query rewriting is to prefer to ABox cleaning (and vice versa)?

In this paper, we provide the following contributions:
(1) We present effective techniques for both ABox cleaning and consistent query rewrit-
ing in DL-LiteA/OWL 2 QL under IAR semantics. To this aim, we present the QUonto
Inconsistent Data handler (QuID), that implements, within the Quonto system,1 tech-
niques for both the computation of the ABox repair of a DL-LiteA ontology under the
above semantics, as well as techniques for computing the consistent query rewriting
of queries. QuID constitutes (to the best of our knowledge) the first implementation
of tractable algorithms for handling inconsistent instances in OWL ontologies. More-
over, Quonto delegates the management of the ABox to a relational database system
(DBMS). Therefore, for ABox cleaning, all modifications of the ABox are delegated
to the DBMS through SQL queries and updates; and for consistent query rewriting, the
rewritten query can be directly executed by the DBMS on the original database. This
potentially allows for handling inconsistency in very large ABoxes under both tech-
niques.
(2) We present the results of a set of experiments that we have conducted using QuID.
These results clearly show that ABox cleaning in DL-LiteA is actually scalable: QuID is
able to efficiently compute the IAR repair of both complex and large ontologies, whose
ABoxes contain up to millions of assertions and have hundreds of thousands of asser-
tions inconsistent with the TBox. On the other hand, the results for the query answering

1 http://www.dis.uniroma.it/˜quonto

technique based on consistent query rewriting are in general less encouraging, since
the structural complexity of the reformulated queries makes the whole query answering
process slower than the approach based on ABox cleaning, although consistent query
rewriting does not require pre-processing of the ABox.
(3) Our experimental results allow us to understand the actual impact of the different as-
pects involved in the computation of the ABox repair and in consistent query rewriting,
and the limits and possibilities of the two approaches implemented in QuID.

The rest of the paper is organized as follows. In Section 2, we present a detailed al-
gorithm for computing IAR repairs in DL-LiteA. In Section 3, we briefly recall the algo-
rithm presented in [6] for consistent query rewriting under IAR semantics in DL-LiteA.
In Section 4 we present the QuID system and report on the experimental evaluation we
have conducted with QuID. Finally, in Section 5 we conclude the paper.

2 ABox cleaning technique for OWL 2 QL

We start by briefly recalling the DL DL-LiteA and the IAR semantics.
In this paper we consider DL ontologies specified in DL-LiteA, a member of

the DL-Lite family of tractable Description Logics [2, 1], which is at the basis of
OWL 2 QL, one of the profiles of OWL 2, the ontology specification language of the
World Wide Web Consortium (W3C). DL-LiteA distinguishes concepts from value-
domains, which denote sets of (data) values, and roles from attributes, which denote
binary relations between objects and values. Concepts, roles, attributes, and value-
domains in this DL are formed according to the following syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→>D | T1 | · · · | Tn

Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

In such rules,A, P , and U respectively denote an atomic concept (i.e., a concept name),
an atomic role (i.e., a role name), and an attribute name, P− denotes the inverse of an
atomic role, whereas B and Q are called basic concept and basic role, respectively.
Furthermore, δ(U) denotes the domain of U , i.e., the set of objects that U relates to
values; ρ(U) denotes the range of U , i.e., the set of values that U relates to objects;
>D is the universal value-domain; T1, . . . , Tn are n pairwise disjoint unbounded value-
domains. A DL-LiteA ontology is a pair K = 〈T ,A〉, where T is the TBox and A the
ABox. The TBox T is a finite set of assertions of the form

B v C Q v R E v F U v V (funct Q) (funct U)

From left to right, the first four assertions respectively denote inclusions between con-
cepts, roles, value-domains, and attributes. In turn, the last two assertions denote func-
tionality on roles and on attributes. In fact, in DL-LiteA TBoxes we further impose that
roles and attributes occurring in functionality assertions cannot be specialized (i.e., they
cannot occur in the right-hand side of inclusions). In practice, the only difference be-
tween DL-LiteA and OWL 2 QL lies in the presence of functionality assertions (which

are not allowed in OWL 2 QL). Due to space limitations, we refer the reader to [7] for
details on the semantics of DL-LiteA.

We then briefly recall the IAR semantics for inconsistency-tolerance in DL ontolo-
gies (see [5] for more details). LetK = 〈T ,A〉 be a DL ontology. Then, the IAR-repair
ofK is defined as the ABox corresponding to the intersection of all the maximal subsets
ofA that are consistent with T . A first-order formula φ is entailed by K under the IAR
semantics if φ is entailed by 〈T ,AR〉 under the standard DL semantics, where AR is
the IAR-repair of K. We are interested in checking (Boolean) unions of conjunctive
queries (UCQs) over DL ontologies.

The technique for computing the IAR-repair of a DL-LiteA ontology 〈T ,A〉 is
based on the idea of deleting from A all the membership assertions participating in
minimal conflict sets for T . As shown in [5], this task is relatively easy (in particular,
tractable) in DL-LiteA because the following property holds: for every DL-LiteA TBox
T , all the minimal conflict sets for T are either unary conflict sets or binary conflict
sets. This property is actually crucial for tractability of reasoning under IAR semantics.

We now present a detailed algorithm for computing the IAR-repair of a DL-LiteA
ontology. This algorithm exploits the techniques presented in [5], whose aim was only
to provide PTIME upper bounds for the problem of computing such repairs. In partic-
ular, the present algorithms specify efficient ways of detecting minimal conflict sets.
Instead, the previous techniques check all unary and binary subsets of the ABox for
these purposes.

In the following, we call annotated ABox assertion an expression ξ of the form
〈α, γ〉 where α is an ABox assertion and γ is a value in the set {cons, ucs, bcs}. Fur-
thermore, we call annotated ABox a set of annotated ABox assertions. The intuition
behind an annotated ABox assertion ξ is that its annotation γ expresses whether the
associated ABox expression α does not participate in any minimal conflict set (cons) or
participates in a unary conflict set (ucs) or to a binary conflict set (bcs).

The following algorithm QuID-IAR-repair computes the IAR-repair of a DL-LiteA
ontology. For ease of exposition, the algorithm does not report details on the treatment
of attributes, which are actually handled in a way analogous to roles. In the following,
we denote concept names with the symbol A, role names with the symbol P , basic
concepts (that is, a concept name A or the domain of a role ∃P or the range of a role
∃P−) with the symbols B1, B2, and basic roles (that is, either a role name P or the
inverse of a role name P−) with the symbolsR,S. Moreover, the expressionB(a) with
B basic concept denotes: the instance assertion A(a) if B = A; an instance assertion
of the form P (a, b) if B = ∃P ; an instance assertion of the form P (b, a) if B = ∃P−.

Algorithm QuID-IAR-repair(K)
input: DL-LiteA ontology K = 〈T ,A〉, output: IAR-repair of K
begin
// STEP 1: create annotated ABox Aann

Aann = ∅;
for each α ∈ A do Aann = Aann ∪ 〈α, cons〉;

// STEP 2: detect unary conflict sets in Aann

for each concept name A s.t. T |= A v ¬A do
for each ξ = 〈A(a), cons〉 ∈ Aann do Aann = Aann − {ξ} ∪ {〈A(a), ucs〉};

for each role name P s.t. T |= P v ¬P do

for each ξ = 〈P (a, b), cons〉 ∈ Aann do Aann = Aann − {ξ} ∪ {〈P (a, b), ucs〉};
for each role name P s.t. T |= P v ¬P− or T |= ∃P v ¬∃P− do

for each ξ = 〈P (a, a), cons〉 ∈ Aann do Aann = Aann − {ξ} ∪ {〈P (a, a), ucs〉};
// STEP 3: detect binary conflict sets in Aann

for each disjointness B1 v ¬B2 such that T |= B1 v ¬B2 do
for each pair ξ1 = 〈B1(a), γ1〉, ξ2 = 〈B2(a), γ2〉 ∈ A′ann such that γ1, γ2 6= ucs do
Aann = Aann − {ξ1, ξ2} ∪ {〈B1(a), bcs〉, 〈B2(a), bcs〉};

for each disjointness R v ¬S such that T |= R v ¬S do
for each pair ξ1 = 〈R(a, b), γ1〉, ξ2 = 〈S(a, b), γ2〉 ∈ A′ann such that γ1, γ2 6= ucs do
Aann = Aann − {ξ1, ξ2} ∪ {〈R(a, b), bcs〉, 〈S(a, b), bcs〉};

for each functionality assertion (funct R) ∈ T do
for each pair ξ1 = 〈R(a, b), γ1〉, ξ2 = 〈R(a, c), γ2〉 ∈ A′ann

such that b 6= c and γ1, γ2 6= ucs do
Aann = Aann − {ξ1, ξ2} ∪ {〈R(a, b), bcs〉, 〈R(a, c), bcs〉};

// STEP 4: extract the IAR repair from Aann

A′ = ∅;
for each 〈α, cons〉 ∈ Aann do A′ = A′ ∪ {α};
return A′

end

The algorithm QuID-IAR-repair consists of four steps which can be informally
described as follows.

step 1 copy ofA into an annotated ABoxAann . In this step, the value of the annotation
is initialized to cons for all ABox assertions.

step 2 detection of the unary conflict sets in Aann . For every assertion of the form
ξ = 〈α, cons〉, such that {α} is a unary conflict set for T , Aann = Aann − {ξ} ∪
{〈α, ucs〉}, i.e., the annotation relative to α is changed to ucs. Unary conflict sets
are actually detected through TBox reasoning, by looking at empty concepts and
roles in T , as well as asymmetric roles, i.e., roles disjoint with their inverse.

step 3 detection of the binary conflict sets in Aann . For every pair of assertions of the
form ξ1 = 〈α1, γ1〉, ξ2 = 〈α2, γ2〉 such that γ1 6= ucs and γ2 6= ucs and {α, β} is a
binary conflict set for T , Aann = Aann − {ξ1, ξ2} ∪ {〈α, bcs〉, 〈β, bcs〉}, i.e., the
annotation relative to α and β is changed to bcs. As in the case of unary conflict
sets, to find binary conflict sets the algorithm looks for disjoint concepts and roles
in T , as well as functional roles.

step 4 extraction of the IAR-repair from Aann . The IAR-repair can be now simply
extracted from the annotated ABox Aann , by eliminating both unary conflict sets
and binary conflict sets. Therefore, for every assertion of the form 〈α, cons〉 in
Aann , α is copied into the (non-annotated) ABox A′ which is finally returned by
the algorithm.

Correctness of the above algorithm can be proved starting from the results in [5].

Theorem 1. Let K be a DL-LiteA ontology and let A′ be the ABox returned by
QuID-IAR-repair(K). Then, A′ is the IAR repair of K.

3 Perfect reformulation of UCQs under IAR semantics

We now briefly recall the query rewriting technique proposed in [6]. Such a technique
computes a first-order query Q′ starting from a union of conjunctive queries Q and
a DL-LiteA TBox T . The query Q′ is a perfect reformulation of Q with respect to T
under the IAR semantics, i.e.,Q′ is such that, for every ABoxA, the answers toQ over
〈T ,A〉 under the IAR semantics correspond to to the answers to Q′ computed over the
ABox A only. Due to space limits, here we just report the main definitions of the query
rewriting technique: we refer the reader to [6] for more details on the method.

The first definition that we give can be used to establish whether a certain atom is
consistent with the TBox axioms. Let A be an atomic concept in ΓO and t a term (i.e.,
either a constant or a variable symbol), we pose ConsAtTA(t) = false if T |= A v ¬A,
true otherwise. That is, ConsAtTA(t) is false if and only if the concept A is unsatisfi-
able. For an atomic role P ∈ ΓO and terms t, t′, we define: (i) ConsAtTP (t, t

′) = false
if T |= P v ¬P ; (ii) t 6= t′ if T |= P v ¬P− or T |= ∃P v ¬∃P−; (iii) true
otherwise (an analogous definition holds for an attribute U ∈ ΓO and terms t and t′).

Now we deal with possible clashes involving negative inclusions, which are also
called disjointnesses. Let B be a basic concept built from an atomic concept or an
atomic role of ΓO, and let t be a term. Then, we define NotDisjClashTB(t) as the fol-
lowing FOL formula:∧
A∈DCN (B,T)

¬(A(t) ∧ ConsAtTA(t)) ∧
∧

P∈DRD(B,T)

¬(∃y.P (t, y) ∧ ConsAtTP (t, y))∧∧
P∈DRR(B,T)

¬(∃y.P (y, t) ∧ ConsAtTP (y, t)) ∧
∧

U∈DAD(B,T)

¬(∃y.U(t, y) ∧ ConsAtTU (t, y))

where y is a variable symbol such that y 6= t , DCN , DRD , DRR, and DAD are
defined as follows:

DCN (B, T) = {A | A is an atomic concept of ΓO and T |= B v ¬A}
DRD(B, T) = {P | P is an atomic role of ΓO and T |= B v ¬∃P}
DRR(B, T) = {P | P is an atomic role of ΓO and T |= B v ¬∃P−}
DAD(B, T) = {U | U is an attribute of ΓO and T |= B v ¬δ(U)}

Let us now consider disjointness clashes for roles. Let P be a role name from ΓO
and let t, t′ be terms, we define the formula NotDisjClashTP (t, t

′) as follows:∧
S∈DisjRoles(P,T) ¬(S(t, t

′) ∧ ConsAtTS (t, t′)) ∧NotDisjClashT∃P (t)∧∧
S∈DisjInvRoles(P,T) ¬(S(t

′, t) ∧ ConsAtTS (t′, t)) ∧NotDisjClashT∃P−(t′)

where, again, if either t or t′ are variable symbols, then they are free variables, and the
sets DisjRoles(P, T) and DisjInvRoles(P, T) are defined as follows:

DisjRoles(P, T) = {S | S is a role name of ΓO and T |= P v ¬S}
DisjInvRoles(P, T) = {S | S is a role name of ΓO and T |= P v ¬S−}.

Intuitively, NotDisjClashTP (t, t
′) will be used in the reformulation to deal with pos-

sible violations of negative inclusions involving P . This means considering role in-
clusions, through the sets DisjRoles(P, T) and DisjInvRoles(P, T), and concept in-
clusions of the form ∃P v ¬B and of the form ∃P− v ¬B, through the use

of NotDisjClashT∃P (t) and NotDisjClashT∃P−(t′), respectively. ConsAtTS (t, t
′) plays

here a role analogous to the one played by ConsAt formulas in NotDisjClashTB(t).
(The function NotDisjClashTU for attributes U is defined in an analogous way.)

Finally, we consider clashes on functionalities and define NotFunctClashTP (t, t
′)

as the following FOL formula:

– if (funct P) 6∈ T and (funct P−) 6∈ T , then NotFunctClashTP (t, t
′) = true;

– if (funct P) ∈ T and (funct P−) 6∈ T , then NotFunctClashTP (t, t
′) =

¬(∃y.P (t, y) ∧ y 6= t′ ∧ ConsAtTP (t, y));
– if (funct P) 6∈ T and (funct P−) ∈ T , then NotFunctClashTP (t, t

′) =
¬(∃y.P (y, t′) ∧ y 6= t ∧ ConsAtTP (y, t));

– if (funct P) ∈ T and (funct P−) ∈ T , then NotFunctClashTP (t, t
′) =

¬(∃y.P (t, y)∧y 6= t′∧ConsAtTP (t, y))∧¬(∃y.P (y, t′)∧y 6= t∧ConsAtTP (y, t)).
(The function NotFunctClashTU for attributes U is defined analogously.)

We are now able to define for each DL-LiteA construct the formula that combines
together the various formulas we have introduced for dealing with the various possible
clashes: (i) NotClashTA(t) = NotDisjClashTA(t) for an atomic concept name A and
term t; (ii) NotClashTZ (t, t

′) = NotDisjClashTZ (t, t
′) ∧ NotFunctClashTZ (t, t

′) for a
role or attribute name Z and terms t, t′.

Let q be a CQ ∃x1, . . . , xk.
∧n

i=1Ai(t
1
i)∧

∧m
i=1 Pi(t

2
i , t

3
i)∧

∧`
i=1 Ui(t

4
i , t

5
i), where

every Ai is an atomic concept, every Pi is an atomic role, every Ui is an attribute, and
every t1i , t

2
i , t

3
i , t

4
i , t

5
i is either a constant or a variable xj with 1 ≤ j ≤ k. Then, we

define IncRewritingIAR(q, T) as the following FOL sentence

∃x1, . . . , xk.
∧n

i=1Ai(t
1
i) ∧ ConsAtTAi

(t1i) ∧NotClashTAi
(t1i)∧∧m

i=1 Pi(t
2
i , t

3
i) ∧ ConsAtTPi

(t2i , t
3
i) ∧NotClashTPi

(t2i , t
3
i)∧`

i=1 Ui(t
4
i , t

5
i) ∧ ConsAtTUi

(t4i , t
5
i) ∧NotClashTUi

(t4i , t
5
i)

Informally, for each atom Ai(t
1
i), each membership assertion of the ABox A con-

stituting an image of Ai(t
1
i) has not to be inconsistent with the TBox (condition

ConsAtTAi
(t1i)), and has not to be involved in any clash with some other assertion of A

on any negative inclusion (condition NotClashTAi
(t1i)). Similarly for atoms of the form

Pi(t
2
i , t

3
i) and Ui(t

4
i , t

5
i).

Let Q be the UCQ q1 ∨ . . . ∨ qn. Then, we define IncRewritingUCQIAR(Q, T) =∨n
i=1 IncRewritingIAR(qi, T). Finally, we define PerfectRefIAR(Q, T) as

IncRewritingUCQIAR(PerfectRef(Q, T), T), where PerfectRef(Q, T) denotes the
algorithm for computing a perfect reformulation of a UCQ Q with respect to a
DL-LiteA TBox T under standard semantics [2, 7] (the algorithm PerfectRef(Q, T)
returns a UCQ specified over T). It can be shown (see [6]) that PerfectRefIAR(Q, T)
constitutes a perfect reformulation of Q with respect to T under IAR semantics.

Therefore, using this technique, it is possible to solve query answering under IAR
semantics in DL-LiteA as follows. Given the initial query Q and the ontology 〈T ,A〉,
the first-order query PerfectRefIAR(Q, T) is computed, and then such a first-order query
is evaluated over the original ABox (which is in general inconsistent with T). So, in this
case no repair of the ABox is performed, differently from the algorithm presented in the
previous section.

4 Experiments

We have implemented the techniques presented in the previous Section in the Quonto
system, in a module called QuID (the QUonto Inconsistent Data handler). Essentially,
QuID is a Java implementation of the above algorithms for ABox repair and for query
rewriting. In fact, in the Quonto architecture, the management of the ABox is delegated
to a relational database management system (DBMS): therefore, all the operations on
ABox assertions of the algorithms for computing repairs are executed in QuID by the
DBMS used by Quonto, through appropriate SQL scripts.

We have experimented QuID in order to answer several open questions about: (i)
the computational cost of the various steps of the ABox cleaning algorithm and of the
query rewriting algorithm; (ii) the scalability of such algorithms; (iii) the impact of the
“degree of inconsistency” of the ABox on the computational cost of the algorithms; (iv)
the practical difference between the ABox cleaning tecnhique and the purely intensional
rewriting technique.

Experimenting the QuID-IAR-repair algorithm We have experimented our imple-
mentation of the QuID-IAR-repair algorithm over the LUBM benchmark ontology,2

whose TBox has 43 concept names, 25 role names, 7 attribute names, and about 200
TBox assertions. We have generated 4 different ABoxes by means of the UBA Data
Generator provided by the LUBM website, with an increasing number of assertions, and
used such ABoxes in our experiments. It is important to note that the original LUBM
ontology has no axioms which can generate inconsistency, and hence, no inconsistent
data is contained in the generated ABoxes. So, we sligthly modified the LUBM ontol-
ogy by adding some “inconsistency-generating” axioms and then added inconsistencies
to the ABoxes. We created four different version for every original ABox with differ-
ent percentages of ABox assertions involved in minimal conflict sets, in order to get
ABoxes with respectively 1%, 5%, 10% and 20% of inconsistent assertions, uniformly
distributed among the axioms which might generate inconsistency. Figure 1 shows the
size (number of instance assertions) of the ABoxes we used in the experiments: every
column is labeled with the number of Universities the ABox data contains, and every
row is labeled with the percentage of inconsistent facts added to the ABox itself.

Figure 2 report some of the experimental results that we have obtained. The table
displayed presents the experimental results for QuID-IAR-repair using a PostgreSQL
9.1 instance as external DBMS. The results have been conducted on a Pentium i5 (2.4
GHz) CPU with 4GB RAM under Windows 7 (64 bit) operating system.

All the necessary software, as well as instructions on how to reproduce the ex-
periments presented in this section, are publicly available at http://www.dis.
uniroma1.it/˜ruzzi/quid/. Further details on the ontology used in the exper-
iments are also available there.

In the table displayed in Figure 2, the first column reports the number of universities
represented in the ABox, while the second column reports the percentage of ABox
assertions that participate in minimal conflict sets for the considered TBox. Moreover:

– T1 denotes the time to create the annotated ABox (step 1 of QuID-IAR-repair);
2 http://swat.cse.lehigh.edu/projects/lubm/

– T2 denotes the time to detect unary and binary conflict sets (steps 2 and 3 of QuID-
IAR-repair);

– T3 denotes the time to extract the IAR-repair from the annotated ABox (step 4 of
QuID-IAR-repair);

– Total is the total time to compute the IAR-repair, i.e., T1+T2+T3.

1 5 10 20
1 103765 631960 1285244 2711216

5 109165 658980 1339304 2819337

10 115845 692400 1406124 2952957

20 130445 765380 1552104 3244937

Number of Universities

In
c.

 P
er

c.

Fig. 1. Size of the UBA generated ABoxes

#Univ Inc% T1 (ms) T2 (ms) T3 (ms) Total (ms)
1 66908 2356 73617 142881

5 69748 11559 71401 152708

10 71402 24523 70231 166156

20 85878 50014 68156 204048

1 414477 13416 418970 846863

5 419298 60434 414854 894586

10 412371 131805 403619 947795

20 466363 254000 406880 1127243

1 968123 31060 953037 1952220

5 945471 140447 917890 2003808

10 936688 271830 884835 2093353

20 987216 573020 873664 2433900

1 2381829 137327 2379121 4898277

5 2485267 353486 2251335 5090088

10 2233066 722468 2212381 5167915

20 2297791 1417200 2090794 5805785

1

5

10

20

Fig. 2. Repair generation time

The above experimental results show that:

(i) the computation of the IAR-repair (column T1) seems really scalable, and grows
almost linearly w.r.t. the size of the ABox.

(ii) the percentage of inconsistency, i.e., the fraction of ABox assertions that participate
in minimal conflict sets, has a real impact only on the detection of minimal conflict
sets (column T2);

(iii) most of the whole execution time of the QuID-IAR-repair algorithm is devoted
to the creation of annotated ABox (T1) and of the final repair (T3): if this could
be avoided (e.g., by just modifying the original database, as explained below), the
algorithm would be much more efficient, since only time T2 would be consumed.

Experimenting the consistent query rewriting approach As above observed, most of
the execution time of the algorithm QuID-IAR-repair using a disk-resident DB is due
to the creation of the annotated ABox (step 1) and to the creation of the IAR-repair

(step 4). Thus, avoiding these steps would dramatically improve the efficiency of this
algorithm.

To this aim, we observe that both the above steps could be completely avoided if the
database schema used for representing the ABox would present an additional attribute
for storing annotations in every relation (the usual DB representation of an ABox uses a
unary relation for every concept and a binary relation for every role). This corresponds
to the idea of directly using an annotated ABox instead of a standard ABox in the
system. In this case, the computation of the IAR-repair could only consist of steps 2 and
3 of the algorithm QuID-IAR-repair. However, the choice of using an annotated ABox
instead of a standard ABox could affect query answering, since the queries evaluated on
an annotated ABox should be able to only consider the assertions whose annotation is
equal to cons. Similarly, exploiting the query rewriting technique presented in Section 3,
it is possible to completely avoid the computation of the annotated ABox, and could be
able to evaluate the first-order query corresponding to the perfect reformulation of the
original query directly over the original, inconsistent, ABox.

We have experimented whether this choice is actually feasible. In particular, we
tested and compared three different approaches: (IAR) evaluation of the IAR perfect
reformulation over the inconsistent ABox; (ANN) evaluation over the annotated ABox
Aann (produced by the QuID-IAR-repair algorithm) of the original query enriched
with suitable conditions that are needed to filter out the assertions belonging to minimal
conflict sets; (REP) evaluation of the original query over the repair using the standard
query answering technique of QuOnto. Figure 3 presents a table showing the evaluation
time of nine of the fourteen queries of the LUBM benchmark over all the ABoxes
previously considered. We adopted a timeout (denoted by T.o. in the table) of 1 hour.3

Comparing the two approaches These experimental results show that, in QuID, evalu-
ating queries on the annotated ABox is computationally not harder than evaluating them
on the standard ABox. Conversely, the evaluation of the IAR perfect reformulations is
often more expensive (in particular, it is more expensive for queries Q5–Q9). This is
due to the fact that we have built no repair and we are querying the inconsisent ABox:
thus, as shown in the previous section, the IAR perfect reformulation essentially has
to select only assertions of the ABox which do not participate in minimal inconsistent
sets (with respect to the TBox). This makes the form of such queries quite involved: in
particular, the SQL queries corresponding to the IAR perfect refomulations of UCQs
may present several nesting levels, which makes such queries hard to evaluate by cur-
rent DBMSs. This consideration is enforced, e.g., by the evaluation time of query Q5,
which is greater than 1 hour on the ABox representing 5 universities. That is, in this
case the time to evaluate the IAR perfect reformulation of this query over the original
ABox is much greater than computing the IAR repair and then evaluating the original
query on the repaired ABox.

Combining the results of Figure 2 and Figure 3, it seems that, in general, the ABox
cleaning approach is more convenient than the consistent query rewriting approach.
In other words, the cost of preprocessing the ABox is generally an acceptable one,

3 Further details on our experiments can be found at http://www.dis.uniroma1.it/
˜ruzzi/quid/.

#Univ Inc% IAR ANN REP IAR ANN REP IAR ANN REP
1 2324 37 31 31 2 0 32 7 16

5 2340 36 16 32 3 0 31 8 0

10 2325 40 16 31 0 0 31 10 0

20 2340 36 16 32 3 0 31 7 0

1 905 2393 2808 31 238 405 63 874 999

5 874 2882 3135 16 162 297 62 964 936

10 561 3826 2668 32 113 218 78 882 936

20 942 2968 4259 31 423 390 63 1063 1435

1 6661 11659 9531 32 162 390 3510 2441 2434

5 4306 10878 9610 32 355 281 2122 2111 1966

10 5663 8928 6926 47 437 406 1856 1977 2074

20 4540 7677 7425 62 367 281 2871 1694 1701

1 11170 13625 20748 32 210 375 1639 1060 3229

5 9859 18356 21887 63 317 390 2028 2198 3323

10 9844 16870 14883 47 365 249 2075 2605 2996

20 8783 18347 15725 63 482 296 2496 1486 2402

#Univ Inc% IAR ANN REP IAR ANN REP IAR ANN REP
1 78 4 0 4898 17 15 297 7 16

5 78 0 15 4899 20 16 312 10 0

10 78 0 0 4696 10 15 312 0 0

20 62 4 15 4727 18 16 312 7 0

1 125 446 453 T.o. 15998 17659 1529 35 47

5 203 351 421 T.o. 23721 14914 1529 37 47

10 187 348 561 T.o. 15243 16521 1560 31 31

20 202 444 749 T.o. 19612 22963 1748 30 15

1 3588 220 1372 T.o. 54142 52434 2995 66 62

5 889 912 1185 T.o. 41709 54600 3167 66 62

10 1701 237 936 T.o. 50099 48875 3229 70 63

20 1607 771 843 T.o. 35762 40138 3448 73 78

1 1965 1398 1794 T.o. 99222 127796 6396 157 156

5 2106 1121 1435 T.o. 112814 132288 6536 152 141

10 2262 1238 1357 T.o. 113969 110622 6739 157 156

20 3900 1273 1544 T.o. 103710 110339 7332 145 140

#Univ Inc% IAR ANN REP IAR ANN REP IAR ANN REP
1 4539 37 31 499 8 16 219 3 0

5 4695 40 47 515 0 0 187 0 15

10 4586 40 31 500 10 16 171 0 0

20 4571 38 47 406 9 0 140 2 0

1 4652 557 453 1716 43 31 172 3 31

5 4664 575 343 1731 39 31 156 29 0

10 4648 533 515 1732 57 31 156 9 47

20 4665 828 671 1731 40 16 141 30 31

1 4901 799 593 4025 71 62 234 17 16

5 4790 894 655 3479 80 63 219 20 31

10 4695 813 686 3339 88 63 234 18 15

20 4477 833 483 3354 85 63 156 13 15

1 4508 590 577 5444 160 141 296 15 15

5 4509 898 733 5553 160 140 312 10 16

10 4430 753 437 5974 162 141 297 21 15

20 4508 839 437 12215 171 156 156 9 16

5

10

20

10

20

Q7 Q8 Q9

1

20

Q4 Q5 Q6

1

5

Q1 Q2 Q3

1

5

10

Fig. 3. Query answering time (in milliseconds) for the various techniques

and really pays off during the evaluation of the queries, especially when the annotated
representation of the ABox is adopted.

On the other hand, it is worth recalling that the ABox cleaning approach might not
always be possible or easily realizable in real applications, especially in ontology-based
data access (OBDA) scenarios where the ABox is actually a virtual object that is defined
through virtual queries/views over one or more remote databases: (see e.g., [7]): in these
cases, the OBDA system can typically only read such databases.

5 Conclusions

In this paper we have presented a practical approach to automatic the repair of incon-
sistent ontologies. The key features of our approach are the following: (i) the semantics
of the repair are simple, intuitive, formally grounded, and defined for all DLs; (ii) such
semantics allow for tractable automatic ABox cleaning and consistent query rewriting
in the case of OWL 2 QL ontologies; (iii) our experiments show that the approach is
really scalable, and that very large ABoxes can be effectively repaired.

The work presented in this paper can be extended in several directions. First, the
present implementation can be certainly further optimized. For instance, besided work-
ing with an annotated ABox representation, other optimizations are possible: one pos-
sibility which seems worth exploring is employing summarization techniques for ABox
representation, as in [3]. Also, the consistent query rewriting technique can be certainly
optimized to the aim of reducing the size of the reformulated query. Then, it would be
very interesting to see whether the techniques presented in this paper can be extended
to other tractable OWL profiles.
Acknowledgments. This research has been partially supported by the ICT Collabora-
tive Project ACSI (Artifact-Centric Service Interoperation), funded by the EU under
FP7 ICT Call 5, 2009.1.2, grant agreement n. FP7-257593.

References
1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and

relations. J. of Artificial Intelligence Research, 36:1–69, 2009.
2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning

and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

3. J. Dolby, J. Fan, A. Fokoue, A. Kalyanpur, A. Kershenbaum, L. Ma, J. W. Murdock, K. Srini-
vas, and C. A. Welty. Scalable cleanup of information extraction data using ontologies. In
ISWC/ASWC, pages 100–113, 2007.

4. A. Hogan, A. Harth, A. Passant, S. Decker, and A. Polleres. Weaving the pedantic web. In
Proc. of 3rd Int. Workshop on Linked Data on the Web (LDOW2010), 2010.

5. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-tolerant seman-
tics for description logics. In Proc. of RR 2010, 2010.

6. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Query rewriting for inconsistent
DL-Lite ontologies. In Proc. of RR 2011, 2011.

7. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

8. Z. Wang, K. Wang, and R. W. Topor. A new approach to knowledge base revision in DL-Lite.
In Proc. of AAAI 2010. AAAI Press, 2010.

