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Abstract. Web APIs have gained increasing popularity in recent Web
service technology development owing to its simplicity of technology
stack and the proliferation of mashups. However, efficiently discovering
Web APIs and the relevant documentations on the Web is still a chal-
lenging task even with the best resources available on the Web. In this
paper we cast the problem of detecting the Web API documentations as
a text classification problem of classifying a given Web page as Web API
associated or not. We propose a supervised generative topic model called
feature latent Dirichlet allocation (feaLDA) which offers a generic prob-
abilistic framework for automatic detection of Web APIs. feaLDA not
only captures the correspondence between data and the associated class
labels, but also provides a mechanism for incorporating side information
such as labelled features automatically learned from data that can effec-
tively help improving classification performance. Extensive experiments
on our Web APIs documentation dataset shows that the feaLDA model
outperforms three strong supervised baselines including naive Bayes, sup-
port vector machines, and the maximum entropy model, by over 3% in
classification accuracy. In addition, feaLDA also gives superior perfor-
mance when compared against other existing supervised topic models.

1 Introduction

On the Web, service technologies are currently marked by the proliferation of
Web APIs, also called RESTful services when they conform to REST principles.
Major Web sites such as Facebook, Flickr, Salesforce or Amazon provide access
to their data and functionality through Web APIs. To a large extent this trend
is impelled by the simplicity of the technology stack, compared to WSDL and
SOAP based Web services, as well as by the simplicity with which such APIs
can be offered over preexisting Web site infrastructures [15].

When building a new service-oriented application, a fundamental step is
discovering existing services or APIs. Main means used nowadays by develop-
ers for locating Web APIs are searching through dedicated registries like Pro-
grammableWeb! which are manually populated or to use traditional search en-

! http://www.programmableweb. com/
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Fig. 1: Examples of Web pages documenting and not documenting Web APIs.

gines like Google. While public API registries provide highly valuable informa-
tion, there are also some noticeable issues. First, more often than not, these
registries contain out of date information (e.g. closed APIs are still listed) or
even provide incorrect links to APIs documentation pages (e.g. the home page
of the company is given instead). Indeed, the manual nature of the data acquisi-
tion in APIs registries aggravates these problems as new APIs appear, disappear
or change. Automatically detecting the incorrect information will help registry
operator better maintain their registry quality and provide better services to de-
velopers. Second, partly due to the manual submission mechanism, APIs listed
in the public registries are still limited where a large number of valuable third
party Web APIs may not be included. In this case, the alternative approach
is to resort to Web search engine. However, general purpose search engines are
not optimised for this type of activity and often mix relevant pages documenting
Web APIs with general pages e.g., blogs and advertisement. Figure 1 shows both
a Web pages documenting an API and one that is not that relevant but would
still be presented in the results returned by search engines.

Motivated by the above observations, in our ongoing work on iServe (a public
platform for service publication and discovery), we are building an automatic
Web APIs search engine for detecting third party Web APIs on the Web scale.
Particularly, we assume that Web pages documenting APIs are good identifiers
for the detection as whenever we use an API the first referring point is likely to be
the related documentation. While identifying WSDL services are relatively easy
by detecting the WSDL documentation which has a standard format, detecting
Web APIs documentation raises more challenges. This is due to the fact that
Web APIs are generally described in plain and unstructured HTML which are
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only readable by human being; and to make it worse, the format of documenting
a Web APIT is highly heterogeneous, so as its content and level of details [11].
Therefore, a prerequisite to the success of our Web APIs search engine is to
construct a classifier which can offer high performance in identifying Web pages
documenting Web APIs.

In this paper, we propose a novel supervised topic model called feature latent
Dirichlet allocation (feal.LDA) for text classification by formulating the generative
process that topics are draw dependent on document class labels and words
are draw conditioned on the document label-topic pairs. Particularly, feaLDA
is distinguished from other related supervised topic models in its capability of
accommodating different types of supervision. In particular, while supervised
topic models such as labeled LDA and partial labeled LDA (pLDA) [19,20] can
only model the correspondence between class labels and documents, fealLDA is
able to incorporate supervision from both document labels and labelled features
for effectively improving classification performance, where the labelled features
can be learned automatically from training data.

We tested feaLDA on a Web APIs dataset consisting of 622 Web pages docu-
menting Web APIs and 925 normal Web pages crawled from ProgrammingWeb.
Results from extensive experiments show that the proposed feaLDA model can
achieve a very high precision of 85.2%, and it significantly outperforms three
strong supervised baselines (i.e. naive Bayes, maximum entropy and SVM) as
well as two closed related supervised topic models (i.e. labeled LDA and pLDA)
by over 3% in accuracy. Aside from text classification, feaLDA can also extract
meaningful topics with clear class label associations as illustrated by some topic
examples extracted from the Web APIs dataset.

The rest of the paper is organised as follows. Section 2 reviews the previous
work on Web APIs detection and the supervised topic models that are closely
related to feaLDA. Section 3 presents the feaLDA model and the model infer-
ence procedure. Experimental setup and results on the Web APIs dataset are
discussed in Sections 4 and 5, respectively. Finally, Section 6 concludes the paper
and outlines the future work.

2 Related Work

Web Service Discovery Service discovery has been the subject of much
research and development. The most renown work is perhaps Universal Descrip-
tion Discovery and Integration (UDDI) [3], while nowadays Seekda? provides the
largest public index with about 29,000 WSDL Web services. The adoption of
these registries has, however, been limited [3,18]. Centred around WSDL, UDDI
and related service technologies, research on semantic Web services has gener-
ated a number of ontologies, semantic discovery engines, and further supporting
infrastructure aiming at improving the level of automation and accuracy that
can be obtained throughout the life-cycle of service-oriented application, see [17]

2 http://webservices.seekda.com/
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for an extensive survey. Despite these advances, the majority of these initiatives
are predicated upon the use of WSDL Web services, which have turned out not
to be prevalent on the Web where Web APIs are increasingly favoured [15].

A fundamental characteristic of Web APIs is the fact that, despite a number
of proposals [6, 7], there is no widely adopted means for publishing these ser-
vices nor for describing their functionality in a way such that machines could
automatically locate these APIs and understand the functionality and data they
offer. Instead, Web APIs are solely accompanied by highly heterogeneous HTML
pages providing documentation for developers. As a consequence, there has not
been much progress on supporting the automated discovery of Web APIs. Per-
haps the most popular directory of Web APIs is ProgrammableWeb which, as of
June 2012, lists about 6,200 APIs and provides rather simple search mechanisms
based on keywords, tags, or a simple prefixed categorisation. Based on the data
provided by ProgrammableWeb, APTHut [5] increases the accuracy of keyword-
based search of APIs compared to ProgrammableWeb or plain Google search.
A fundamental drawback of ProgrammableWeb and by extension of APTHut is
that they rely on the manual registration of APIs by users. This data tends to be
out of date (e.g., discontinued APIs are still listed) and often provide pointers
to generic Web pages (e.g., the home page of the company offering the API)
which are not particularly useful for supporting the discovery and use of the
related APIs. Finally, iServe [15] enables the application of advanced (semantic)
discovery algorithms for Web API discovery but, thus far, it is limited by the
fact that it relies on the presence of hRESTS annotations in Web pages which
are still seldom available.

Therefore, despite the increasing relevance of Web APIs, there is hardly any
system available nowadays that is able to adequately support their discovery.
The first and main obstacle in this regard concerns the automated location of
Web APIs, which is the main focus of this paper. In this regard, to the best of our
knowledge, we are only aware of two previous initiatives. One was carried out by
Steinmetz et al. [22], whose initial experiments are, according to the authors, not
sufficiently performant and require further refinement. The second approach [16]
is our initial work in this area which we herein expand and enhance.

Topic Models As shown in previous work [4,12, 21, 25], topic models con-
structed for purpose-specific applications often involve incorporating side infor-
mation or supervised information as prior knowledge for model learning, which
in general can be categorised into two types depending on how the side informa-
tion are incorporated [13]. One type is the so called downstream topic models,
where both words and document metadata such as author, publication date,
publication venue, etc. are generated simultaneously conditioned on the topic
assignment of the document. Examples of this type include the mixed member-
ship model [4] and the Group Topic (GT) model [25]. The upstream topic mod-
els, by contrast, start the generative process with the observed side information,
and represent the topic distributions as a mixture of distributions conditioned
on the side information elements. Examples of this type are the Author-Topic
(AT) model [21] and the joint sentiment-topic (JST) model [9, 10]. Although



feaLDA 5

JST can detect sentiment and topic simultaneously from text by incorporating
prior information to modify the Dirichlet priors of the topic-word distribution,
it is still a weakly-supervised model as no mechanism is provided to incorporate
document class label for model inference.

For both downstream and upstream models, most of the models are cus-
tomised for a special type of side information, lacking the capability to ac-
commodate data type beyond their original intention. This limitation has thus
motivated work on developing a generalised framework for incorporating side
information into topic models [2,13]. The supervised latent Dirichlet alloca-
tion (sLDA) model [2] addresses the prediction problem of review ratings by
inferring the most predictive latent topics of document labels. Mimno and Mc-
Callum [13] proposed the Dirichlet-multinomial regression (DMR) topic model
which includes a log-linear prior on the document-topic distributions, where the
prior is a function of the observed document features. The intrinsic difference
between DMR and its complement model sLDA lies in that, while sLDA treats
observed features as generated variables, DMR considers the observed features
as a set, of conditioned variables. Therefore, while incorporating complex features
may result in increasingly intractable inference in sLDA, the inference in DMR
can remain relatively simple by accounting for all the observed side information
in the document-specific Dirichlet parameters.

Closely related to our work are the supervised topic models incorporating
document class labels. DiscLDA [8] and labeled LDA [19] apply a transforma-
tion matrix on document class labels to modify Dirichlet priors of the LDA-like
models. While labeled LDA simply defines a one-to-one correspondence between
LDA’s latent topics and observed document labels and hence does not support
latent topics within a give document label, Partially Labeled LDA (pLDA) ex-
tends labeled LDA to incorporate per-label latent topics [20]. Different from the
previous work where only document labels are incorporated as prior knowledge
into model learning, we propose a novel feature LDA (feaLDA) model which
is capable of incorporating supervised information derive from both the docu-
ment labels and the labelled features learned from data to constrain the model
learning process.

3 The Feature LDA (feaLDA) Model

The feaLDA model is a supervised generative topic model for text classifica-
tion by extending latent Dirichlet allocation (LDA) [1] as shown in Figure 2a.
feaLDA accounts for document labels during the generative process, where each
document can associate with a single class label or multiple class labels. In con-
trast to most of the existing supervised topic models [8,19,20], fealLDA not only
accounts for the correspondence between class labels and data, but can also in-
corporate side information from labelled features to constrain the Dirichlet prior
of topic-word distributions for effectively improving classification performance.
Here the labelled features can be learned automatically from training data using
any feature selection method such as information gain.
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Fig.2: (a) LDA model; (b) feaLDA model.

The graphical model of fealLDA is shown in Figure 2b. Assume that we have
a corpus with a document collection D = {d;,ds, ...,dp}; each document in the
corpus is a sequence of Ny words denoted by d = (wi,ws, ..., wn,), and each
word in the document is an item from a vocabulary index with V' distinct terms.
Also, letting K be the number of class labels, and T be the total number of
topics, the complete procedure for generating a word w; in fealLDA is as follows:

— For each class label k € {1,..., K}

o For each topic j € {1,...,T}, draw g, ~ Dir(Bx;)
— For each document d € {1, ..., D},

o draw my ~ Dir(y X €4)

e For each class label k, draw 645 ~ Dir(oy,)
— For each word w; in document d

e Draw a class label ¢; ~ Mult(my)

e Draw a topic z; ~ Mult(6,,)

e Draw a word w; ~ Mult(ep, »,)

First, one draws a class label ¢ from the per-document class label proportion
4. Following that, one draws a topic z from the per-document topic proportion
04 . conditioned on the sampled class label c. Finally, one draws a word from the
per-corpus word distribution ¢, . conditioned on both topic z and class label c.

It is worth noting that if we assume that the class distribution 7 of the
training data is observed and the number of topics is set to 1, then our feaLDA
model is reduced to labeled LDA [19] where during training, words can only be
assigned to the observed class labels in the document. If we allow multiple topics
to be modelled under each class label, but don’t incorporate the labelled feature
constraints, then our fealLDA model is reduced to pLDA [20]. Both labelled LDA
and pLDA actually imply a different generative process where class distribution
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for each document is observed, whereas our feaLDA model incorporates super-
vised information in a more principled way by introducing the transformation
matrices A and € for encoding the prior knowledge derived from both document
labels and labelled features to modify the Dirichlet priors of document specific
class distributions and topic-word distributions. A detailed discussion on how
this can be done is presented subsequently.

3.1 Incorporating Supervised Information

Incorporating Document Class Labels: feaLDA incorporates the super-
vised information from document class labels by constraining that a training
document can only be generated from the topic set with class labels correspond
to the document’s observed label set. This is achieved by introducing a depen-
dency link from the document label matrix € to the Dirichlet prior . Suppose a
corpus has 2 unique labels denoted by C = {¢1,c2} and for each label ¢ there
are 5 topics denoted by 6., = {21,c,,.-25,¢, }- Given document d’s observed label
vector €4 = {1,0} which indicates that d is associated with class label c¢;, we
can encode the label information into fealLDA as

Yo = €5 X . (1)

where v = {7y1,72} is the Dirichlet prior for the per-document class proportion
74 and v4 = {71, 0} is the modified Dirichlet prior for document d after encoding
the class label information. This ensures that d can only be generated from topics
associated with class label c¢; restricted by ~1.
Incorporating Labelled Features: The second type of supervision that
feaLDA accommodates is the labelled features automatically learned from the
training data. This is motivated by the observation that LDA and existing su-
pervised topic models usually set the Dirichlet prior of topic word distribution
B to a symmetric value, which assumes each term in the corpus vocabulary is
equally important before having observed any actual data. However, from a clas-
sification point of view, this is clearly not the case. For instance, words such as
“endpoint”, “delete” and “post” are more likely to appear in Web API docu-
mentations, whereas words like “money”, “shop” and “chart” are more related
to a document describing shopping. Hence, some words are more important to
discriminate one class from the others. Therefore, we hypothesise that the word-
class association probabilities or labelled features could be incorporated into
model learning and potentially improve the model classification performance.
We encode the labelled features into fealLDA by adding an additional depen-
dency link of ¢ (i.e., the topic-word distribution) on the word-class association
probability matrix A with dimension C' x V', where V' denotes the labelled fea-
ture size and V' <= V. For word wj;, its class association probability vector
is Aw, = (Aeywys-oos Aegew; )» Where Zch:1 Acp,w; = 1. For example, the word
“delete” in the API dataset with index w; in the vocabulary has a correspond-
ing class association probability vector A,,, = (0.3,0.7), indicating that “delete”
has a probability of 0.3 associating with the non-API class and a probability
of 0.7 with the API class. For each w € V, if w € V’, we can then incorporate
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labelled features into feaLDA by setting 8., = Acw, otherwise the corresponding
component of 3 is kept unchanged. In this way, feaLDA can ensure that labelled
features such as “delete” have higher probability of being drawn from topics
associated with the API class.

3.2 Model Inference

From the fealLDA graphical model depicted in Figure 2b, we can write the joint
distribution of all observed and hidden variables which can be factored into three
terms:

P(w,z,c) = P(w|z,c)P(z,c) = P(w|z,c)P(z|c)P(c) (2)
:/P(W|z,c,s§)P(45|ﬂ)d45-/P(z\c,@) P(O|a) d@A/P(c|H) P(II|vy)dIT. (3)

By integrating out @, @ and I in the first, second and third term of Equa-
tion 3 respectively, we can obtain

(T2 Brji) . IL; I'(Nk,j,i + Br,j,i)
Flvlee) = (HY_I rwk,j,»> TR, 5 5 @
(I )\ [T, I'(Naxj + ax,;)
Flele) = (HjTl F(%j)) 1;[1;[ P(Naw + 32, ak,j) )
(S 0\ 1y T TN + )
e (HC rw) im0 ©

where Ny ;; is the number of times word 7 appeared in topic j with class label
k, Ni ; is the number of times words are assigned to topic j and class label &,
Ng 1, is the number of times a word from document d is associated with topic
j and class label k, Vg, is the number of times class label % is assigned to some
word tokens in document d, Ny is the total number of words in document d and
I' is the gamma function.

The main objective of inference in feaLDA is then to find a set of model
parameters that can best explain the observed data, namely, the per-document
class proportion 7, the per-document class label specific topic proportion 8,
and the per-corpus word distribution ¢. To compute these target distributions,
we need to know the posterior distribution P(z,c|w), i.e., the assignments of
topic and class labels to the word tokens. However, exact inference in fealLDA is
intractable, so we appeal to Gibbs sampler to approximate the posterior based
on the full conditional distribution for a word token.

For a word token at position ¢, its full conditional distribution can be written
as P(z = j,¢t = klw,z7 ¢, ¢t o, 3,7), where z~¢ and c™t are vectors of assign-
ments of topics and class labels for all the words in the collection except for the
word at position ¢ in document d. By evaluating the model joint distribution in
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Table 1: Web APIs dataset statistics.
Num. of Documents|Corpus size|Vocab. size|Avg. doc. length
1,547 1,096,245 35,427 708

Equation 3, we can yield the full conditional distribution as follows

N,;;wt + Br,jt Ndjtyj‘FOlk,j Ndi]i"'_’yk
Nl;; + Zz Br..i Nc;li + Zj Qk,j N;t + Zk %'
(7
Using Equation 7, the Gibbs sampling procedure can be run until a stationary
state of the Markov chain has been reached. Samples obtained from the Markov
chain are then used to estimate the model parameters according to the expecta-
tion of Dirichlet distribution, yielding the approximated per-corpus topic word

distribution ¢y j,; = %, the approximated per-document class label
»J 7 EVELS

P(Zt = j7 Ct = k|w7zitvcit7a7ﬂ77) X

Na,k j+on,;

specific topic proportion 84 ; = NS and finally the approximated
Lkt Ok
per-document class label distribution 745 = J\Ziki%
T Tk

3.3 Hyperparameter Settings

For the feaLDA model hyperparameters, we estimate « from data using maximum-
likelihood estimation and fix the values of 3 and ~.

Setting @ A common practice for topic model implementation is to use
symmetric Dirichlet hyperparameters. However, it was reported that using an
asymmetric Dirichlet prior over the per-document topic proportions has sub-
stantial advantages over a symmetric prior [24]. We initialise the asymmetric
a=(0.1xL)/(K xT), where L is the average document length and the value of
0.1 on average allocates 10% of probability mass for mixing. Afterwards for every
25 Gibbs sampling iterations, « is learned directly from data using maximum-
likelihood estimation [14, 24]

T
W(OL(- z) = g/( O‘g,l(zi) + IOg 66727 (8)

Cs

z=1

where log 0, , = % ZdD:I log04.c,. and ¥ is the digamma function.

Setting 3 The Dirichlet prior 3 is first initialised with a symmetric value of
0.01 [23], and then modified by a transformation matrix A which encodes the
supervised information from the labelled feature learned from the training data.
Setting v We initialise the Dirichlet prior v = (0.1 x L)/K, and then modify
it by the document label matrix €.

4 Experimental Setup

The Web APIs Dataset We evaluate the feaLDA model on the Web APIs
dataset by crawling the Web pages from the API Home URLs of 1,553 Web
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APIs registered in ProgrammableWeb. After discarding the URLs which are out
of date, we end up with 1,547 Web pages, out of which 622 Web pages are
Web API documentations and the remaining 925 Web pages are not Web API
documentations.

Preprocessing The original dataset is in the HTML format. In the prepro-
cessing, we first clean up the HTML pages using the HTML Tidy Library® to
fix any mistakes in the Web page source. An HTML parser is subsequently used
to extract contents from the HTML pages by discarding tags and the contents
associating with the <\script> tag as these scripts are not relevant to clas-
sification. In the second step, we further remove wildcards, word tokens with
non-alphanumeric characters and lower-case all word tokens in the dataset, fol-
lowed by stop word removal and Porter stemming. The dataset statistics are
summarised in Table 1.

Classifying a Document In the feaLDA model, the class label of a test
document is determined based on P(c|d), i.e., the probability of a class label
given a document as specified in the per-document class label proportion 4. So
given a learned model, we classify a document d by ¢, = argmax,, P(cy|d).

5 Experimental Results

In this section, we present the classification results of feaLDA on classifying
a Web page as positive class (API documentation) or negative class (not API
documentation) and compare against three supervised baselines, naive Bayes
(NB), maximum entropy (MaxEnt), and Support Vector Machines (SVMs). We
also evaluate the impact of incorporating labelled features on the classification
performance by varying the proportion of labelled features used. Finally we
compare feaLDA with some of the existing supervised topic models. All the
results reported here are averaged over 5 trials where for each trial the dataset
was randomly split into 80-20 for training and testing. We train feaLDA with a
total number of 1000 Gibbs sampling iterations.

5.1 feaLDA Classification Results without Labelled Features

As the Web APIs dataset only contains two classes, positive or negative, we set
the class number K = 2 in feaLDA. In this section, we only incorporate super-
vised information from the document class labels of the training set. In order
to explore how fealLDA behaves with different topic settings, we experimented
with topic number T € {1,2,3,4,5,6,7,8,9,10,15,20}. It is worth noting that
in fealLDA there are T topics associated with each class label. So for a setting
of 2 class labels and 5 topics, feaLDA essentially models a total number of 10
topic mixtures.

Figure 3 shows the classification accuracy of feaLDA and three supervised
baselines, namely, NB, MaxEnt and SVM. As can be seen from the figure, all

3 http://tidy.sourceforge.net/
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Fig. 3: feaLDA classification accuracy vs. different number of topics by incorpo-
rating supervision from class labels only.

the three supervised baselines achieve around 79% accuracy, with maxEnt giv-
ing a slightly higher accuracy of 79.3%. By incorporating the same supervision
from document class labels, fealLDA outperforms all the three strong supervised
baselines, giving the best accuracy of 80.5% at T = 2.

In terms of the impact of topic number on the model performance, it is
observed that feaLDA performed the best around the topic setting T = {2, 3}.
The classification accuracy drops and slightly fluctuates as the topic number
increases. When the topic number is set to 1, fealLDA essentially becomes the
labelled LDA model with two labelled topics being modelled corresponding to the
two class labels. We see that the single topic setting actually yields worse result
(i.e., 79.6% accuracy) than multiple topic settings, which shows the effectiveness
of fealLDA over labelled LDA.

5.2 feaLLDA Classification Results Incorporating Labelled Features

While feaLDA can achieve competitive performance by incorporating super-
vision from document labels alone, we additionally incorporated supervision
from labelled features to evaluate whether a further gain in performance can
be achieved. We extracted labelled features from the training data using infor-
mation gain and discarded the features which have equal probability of both
classes, resulting in a total of 29,000 features. In this experiment, we ran the
fealLDA model with T € {1,2,3,4,5} as previous results show that large topic
numbers do not yield good performance.

As observed in Figure 4, after incorporating both the document labels and la-
belled features, feaDLA has an substantial improvement over the model incorpo-
rating document labels only, regardless of the topic number setting. Particularly,
feaLDA gives the best accuracy of 81.8% at T = 3, a clear 2.5% improvement
over the best supervised baseline. It is also noted that when topic number is
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Fig. 4: feaLDA classification accuracy vs. different number of topics by incorpo-
rating supervision from both document class labels and labelled features.

relatively large (i.e. T = {4,5}), a significant performance drop is observed for
feaLDA which only incorporates document labels; whereas feaLDA is less sensi-
tive to topic number setting and can give fairly stable performance.

5.3 feaLDA Performance vs. Different Feature Selection Strategies

In the previous section, we directly incorporated all the labelled features into the
fealLDA model. We hypothesise that using appropriate feature selection strate-
gies to incorporate the most informative feature subset may further boost the
model performance. In this section, we explore two feature selection strategies:
(1) incorporate the top M features based on their information gain values; and
(2) incorporate feature f if its highest class association probability is greater
than a predefined threshold 7, i.e, argmax,, P(ck|f) > 7.

Figure 5a shows the classification accuracy of feaLDA by incorporating dif-
ferent number of most informative labelled features ranked by the information
gain values. With topic setting T = {1, 2}, classification accuracy is fairly stable
regardless of the number of features selected. However, with larger number of
topics, incorporating more labelled features generally yields better classification
accuracy. feaLDA with 3 topics achieves the best accuracy of 82.3% by incorpo-
rating the top 25,000 features, slightly outperforming the model with all features
incorporated by 0.5%.

On the other hand, incorporating labelled features filtered by some predefined
threshold could also result in the improvement of classification performance. As
can be seen from Figure 5b, similar accuracy curves are observed for fealLDA
with topic setting T' = {1,2, 3}, where they all achieved the best performance
when 7 = 0.85. Setting higher threshold value, i.e. beyond 0.85, results in per-
formance drop for most of the models as the number of filtered features becomes
relatively small. In consistent with the previous results, feaLDA with 3 topics
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Fig. 5: feaLDA performance vs. different feature selection strategies.

still outperforms the other topic settings giving the best accuracy of 82.7%,
about 1% higher than the result incorporating all the features and 3.4% higher
than the best supervised baseline model MaxEnt. From the above observations,
we conclude that 3 topics and a feature-class association threshold 7 = 0.85 are
the optimal model settings for feaLDA in our experiments.

5.4 Comparing feaLDA with Existing Supervised Topic Models

In this section, we compare the overall performance of feaLDA with two super-
vised topic models (i.e. labelled LDA and pLDA) as well as three supervised
baseline models on the APIs dataset. Apart from classification accuracy, we also
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Table 2: Comparing feaLDA with existing supervised approaches. (Unit in %,
numbers in bold face denote the best result in their respective row.)

Naive Bayes SVM maxEnt laf];l;d pLDA [feaLDA

Recall 79.2 70.8 69.3 59.8 65.9 | 68.8

Precision 71.0 75.4 774 85.1 82.1 | 85.2

F1 74.8 73.1 73 70.2  73.1 76

Accuracy 78.6 79 79.3 79.8 80.5 | 82.7
g T1: nbsp quot gt It http api amp type code format valu json statu paramet element
= |T2: 1t gt id type http px com true url xml integ string fond color titl date
Q? T3: api http user get request url return string id data servic kei list page paramet
.g T1: px color font background pad margin left imag size border width height text div thread
‘bcéo T2: servic api site develop data web user applic http get amp email contact support custom
2| T3: obj park flight min type citi air fizbber airlin stream school die content airport garag

Table 3: Topics extracted by feaLDA with K = 2,7 = 3.

report the recall, precision and F1 score for the positive class (true API label),
which are summarised in Table 2.

It can be seen from Table 2 that although both feaLDA and labeled LDA
give similar precision values, feaLDA outperforms labeled LDA in recall by al-
most 10%. Overall, feaLDA significantly outperforms labeled LDA by 6% in F1
score and 3% in accuracy. While labeled LDA simply defines a one-to-one cor-
respondence between LDA’s latent topics and document labels, pLDA extended
labelled LDA by allowing multiple topics being modelled under each class label.
Although pLDA (with the optimal topic setting 7" = 2) improves upon labeled
LDA, it is still worse than feaLDA with its F-measure nearly 3% lower and ac-
curacy over 2% lower compared to feaLDA. This demonstrates the effectiveness
of feaLDA in incorporating labelled features learned from the training data into
model learning.

When compared to the supervised baseline models, feaLDA outperforms the
supervised baselines in all types of performance measure except recall. Here we
would like to emphasise that one of our goals is to develop a Web APIs discovery
engine on the Web scale. So considering the fact that the majority of the Web
pages are not related to Web API documentation, applying a classifier such
as feaLDA that can offer high precision while maintaining reasonable recall is
crucial to our application.

5.5 Topic Extraction

Finally, we show some topic examples extracted by feaLDA with 2 class label
and 3 topics. As listed in Table 3, the 3 topics in the top half of the table were
generated from the positive API class and the remaining topics were generated
from the negative class, with each topic represented by the top 15 topic words.
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By inspecting the topics extracted by fealLDA it is revealed that, most of the
words appear in the topics with true API label (positive class) are fairly technical
such as json, statu, paramet, element, valu, request and string, etc. In contrast,
topics under the negative class contain many words that are not likely to appear
in an API documentation, such as contact, support, custom, flight, school, etc.
This illustrates the effectiveness of feaLDA in extracting class-associated topics
from text, which can potentially be used for Web service annotation in the future
extension of our search engine.

6 Conclusions

In this paper, we presented a supervised topic model called feature LDA (fealLDA)
which offers a generic framework for text classification. While most of the super-
vised topic models [2,19,20] can only encode supervision from document labels
for model learning, fealLDA is capable to incorporate two different types of super-
vision from both document label and labelled features for effectively improving
classification performance. Specifically, the labelled features can be learned auto-
matically from training data and are used to constrain the asymmetric Dirichlet
prior of topic distributions. Results from extensive experiments show that, the
proposed feaLDA model significantly outperforms three strong supervised base-
lines (i.e. NB, SVM and MaxEnt) as well as two closely related supervised topic
models (i.e. labeled LDA and pLDA) for more than 3% in accuracy. More impor-
tantly, fealLDA offers very high precision performance (more than 85%), which
is crucial to our Web APIs search engine to maintain a low false positive rate as
majority pages on the Web are not related to APIs documentation.

In the future, we plan to develop a self-training framework where unseen
data labelled with high confidence by feal.DA are added to the training pool for
iteratively retraining the feaLDA model with potentially further performance
improvement. Another direction we would like to pursue is to extend feaLDA for
multiple class classification and evaluate it on datasets from different domains.
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