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Abstract. It has become common to use RDF to store the results of Natural Lan-
guage Processing (NLP) as a graph of the entities mentioned in the text with the
relationships mentioned in the text as links between them. These NLP graphs
can be measured with Precision and Recall against a ground truth graph repre-
senting what the documents actually say. When asking conjunctive queries on
NLP graphs, the Recall of the query is expected to be roughly the product of the
Recall of the relations in each conjunct. Since Recall is typically less than one,
conjunctive query Recall on NLP graphs degrades geometrically with the number
of conjuncts. We present an approach to address this Recall problem by hypoth-
esizing links in the graph that would improve query Recall, and then attempting
to find more evidence to support them. Using this approach, we confirm that in
the context of answering queries over NLP graphs, we can use lower confidence
results from NLP components if they complete a query result.

1 Introduction

Semantic web technologies like RDF and OWL are increasingly becoming desired tools
for Natural Language Processing (NLP), for example to store the results of information
extraction from documents. As discussed in [3], it is quite natural to store NLP re-
sults as a graph, and required elements of an NLP stack to produce RDF graphs are
named-entity recognition, relation extraction, coreference resolution, and knowledge
integration. Traditionally, the components of an NLP stack simply feed the knowledge
integration layer as the last step of a pipeline; we have for several years been exploring
the use of semantic technology to influence the NLP stack as well. In this paper, we dis-
cuss the particular problem of evaluating SPARQL queries over RDF graphs that store
the results of NLP, we call these NLP graphs.

The simple step from special-purpose formats and storage of NLP results to us-
ing RDF immediately introduces the advantage of a well developed query language
(SPARQL), and this itself quickly exposes a problem in the combination: as more com-
plex queries are asked of the results, Recall becomes the dominating factor in perfor-
mance. In particular, for queries that are a conjunction of terms, the overall Recall can
be severely degraded by term Recall. In general we expect conjunctive query Recall to



2

be roughly the product of the Recall of the relations in the conjuncts, in the worst case,
query Recall can be zero even for non-zero term Recall if the variable bindings over
individual terms do not overlap. For example, consider the conjunctive query to find
Jordanian citizens who are members of Hezbollah:

SELECT ?p
WHERE {

?p mric:citizenOf geo:Jordan.
mric:Hezbollah mric:hasMember ?p .

}

Even if the Recall of each term (citizenOf, hasMember) is non-zero, their
bindings for the variable ?p must overlap in order for the query Recall to be non-
zero. Roughly speaking, we can estimate conjunctive query Recall as the product of the
Recall of the relations and the probability that triples share arguments. An NLP graph
can be analyzed to produce such estimates, and our empirical analysis supports this
model, however our purpose is not to model it accurately, but to provide an explanation
for our observations that conjuncive query Recall on NLP graphs is unacceptably low,
and to provide a solution.

We describe a system that uses solutions to subsets of a conjunctive SPARQL query
as candidate solutions to the full query, and then attempts to confirm the candidate
solutions using various kinds of inference, external resources, and secondary extrac-
tion results. Previously we showed the hypothesis generation and validation technique
is a promising way of incorporating background knowledge and reasoning in NLP
graphs [1]. In this paper we extend those results by considering evidence from the
secondary hypotheses produced by the components in the NLP stack that are tradition-
ally discarded, and show they can improve Recall while also significantly improving
F-measure.

2 Background

Our task is drawn from the evaluation scenarios used for DARPA’s Machine Reading
program (MRP)4. We were given a target ontology in OWL of types and binary rela-
tions, a corpus of 10, 000 documents taken from the Gigaword corpus, and a set of 79
documents manually annotated with mentions of the target relations and their argument
types. The goal was to find mentions of the types and relations from the ontology in the
corpus, and extract them into an RDF Graph. The MRP evaluation scenario consisted
of 50 queries in SPARQL that were expected to be answered over this NLP Graph. The
query results were evaluated manually by an evaluation team. Each query was supposed
to have at least one correct answer in the corpus, some queries had over 1, 000 correct
answers.

In order to provide more statistical significance in evaluating our system, we made a
few modifications to this evaluation scenario (see section 2.3). In section 2.1 we present
our basic NLP pipeline, and in section 2.2 we present our query-answering solution.

4 http://www.darpa.mil/Our Work/I2O/Programs/Machine Reading.aspx
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2.1 NLP Stack

The NLP Stack contains tokenizers, parsers, coreference resolution and entity disam-
biguation and matching modules, and entity and relation extractors trained on the on-
tology and text in the domain. Its main component is the RelEx relation extractor, an
SVM learner with a string-subsequence kernel defined based on the context of each
entity mention pair in a sentence [2]. An entity mention pair forms an instance that is
positive if a given relation exists between them, and negative otherwise; there is no rep-
resentational difference between explicitly negated relations and not stating the relation
(e.g. ”Joe is not married to Sue” and ”Joe is employed by Sue” are both negative exam-
ples of the spouseOf relation). The output score from the SVM is converted to proba-
bilities/confidences for each known relation that the sentence expresses it between the
pair of mentions.

The NLP Stack is run over the target corpus producing an ‘extraction graph’, in
which graph nodes are entities (clusters of mentions produced by coreference) and
graph edges are either type statements between entities and classes in the ontology,
or relations detected between mentions of these entities in the corpus.

The NLP stack produces two extraction graphs, the primary graph which contains
the single best type, relation, and coreference results for each mention or mention pair,
and the secondary graph, which contains all possibilities considered by the NLP stack.
For example, in the case of relation detection, the system produces, for each pair of
mentions in a sentence, a probability that each known relation (and ‘no relation’) holds,
and produces only the highest probability relation in the primary graph. In many cases,
the losing probabilities are still quite high, as they are computed independently, and may
represent quite useful extraction results. We keep these secondary results for potential
exploitation when needed, as discussed later (Section 4).

The graphs produced are special kinds of RDF graphs, which we refer to as NLP
Graphs. A particular triple in the graph is not an expression of truth, rather it is under-
stood to be a representation of what an NLP component, or a human annotator, read in a
document. Attached to each triple is a confidence supplied by system components, and
provenance information indicating where the triple was believed to have been stated
in natural language. Again, the confidence is not that the triple is true, but reflects the
confidence that the text states the triple.

2.2 Query Answering

The queries are a conjunction of terms from the ontology with some relation arguments
as variables and some bound. For example, consider the query asking to find all terrorist
groups that were agents of bombings in Lebanon on October 23, 1983:

SELECT ?t
WHERE {

?t rdf:type mric:TerroristOrganization .
?b rdf:type mric:Bombing .
?b mric:mediatingAgent ?t .
?b mric:eventLocation mric:Lebanon .
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?b mric:eventDate "1983-10-23" .
}

The query answering system must find all bindings for the variable ?t that satisfy
the conjunctive query and also report where in the target corpus the answers are found.
In practice, this means finding spans of text (‘provenance’) expressing the relations in
the query.

2.3 Evaluation Queries and Ground Truth

The original MRP evaluation required extensive manual effort to perform because of
one basic problem: when RDF graphs are used to store the results of NLP, there is no
way to reliably produce identifiers on the nodes in the graph so that they will match
the identifiers on the nodes in a ground truth. To address this problem, system results
included provenance information in a special format that evaluators would use to find
the mention (i.e. document and span) of an entity in a graph. Using the provenance,
evaluators semi-automatically mapped the entity IDs from system results to entity IDs
in the ground truth. This process proved expensive and error-prone, and was difficult
to reproduce, consequently making it difficult to test systems adequately before the
evaluation. Due to the cost, only 50 queries were used in the original MRP evaluation,
which did not give us a statistically significant way to validate system performance
overall, let alone to test parts of the system in isolation.

In order to generate more meaningful experiments over more queries, we had to
eliminate the manual entity ID mapping step. To do this, we generated an NLP graph
from manually annotated data, which we called a gold-standard graph. From the gold-
standard graph, we automatically generated SPARQL queries (this process is described
below), ran those queries against the graph and produced query results which we called
the gold-standard results. We then measured performance of system results against these
gold standard results. It should be clear that since the gold-standard and system NLP
graphs both use the same set of node IDs, comparing system query results to gold
standard query results is trivial, the only difference between the two graphs (system and
gold standard) is the topology of the graph, not the nodes.

The manual annotation took place on a corpus of 169 documents selected from the
gigaword corpus, which were completely annotated with types, relations, coreference,
and entity names (when they occurred in the text). The corpus was split into two sets
of 60 documents for train and devtest, and a 49 document final (blind) test. The split
was done in a way that balanced the relative frequencies of the relations in each set (see
Table 1). The training set was used to train the relation extraction (RelEx) component
on gold standard mentions, their types, and coreference. Gold standard mentions, types,
and coreference were also used when applying RelEx to the train, devtest and test sets.
Obviously this increases the F-measure of the RelEx output, but our experiments used
that output as a baseline. Again, the purpose of this approach was to give us entity IDs
from the gold standard in our system output.

The original MRP evaluation queries had at least one answer in the corpus. Our
evaluation SPARQL queries were generated from the gold standard NLP graph for each
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document set by extracting random connected subsets of the graph containing 2−8 do-
main relations (not including rdf:type), adding type statements for each node, and
then replacing nodes that had no proper names in text with select variables. Since the
original MRP evaluation queries were not randomly generated, but hand-written oste-
sibly based on the percieved needs of the domain (national intelligence), we analyzed
them and found they tended to be grounded in known (i.e., named) entities, such as
”perpetrators of bombings in Lebanon” or ”spouses of people who attended school in
NY”. To achieve a similar effect in our synthesized evaluation queries, we ensured each
query included the id of an entity that was mentioned by name (as opposed to purely
nominal or pronominal) at least once in the corpus. We generated 475 test queries for
the devtest set and 492 for test. These queries were then run over the same gold standard
graph they were generated from – since they had variables the results would be different
than what we started with – and the results became our gold standard results for query
evaluation.

Although imperfect, our evaluation setup allowed us to run experiments repeatedly
over hundreds of queries with no manual intervention. Our choices sacrifice graph size
as well as giving up system typing and coreference in the output, which are sources
of NLP errors that our hypothesis generation and validation component are capable of
correcting.

3 Query-Driven Hypothesis Generation

The primary obstacle for answering conjunctive queries over NLP Graphs is Recall,
which degrades geometrically with the number of query terms. To address this problem,
we devised a system of hypothesis generation that focuses attention on parts of an NLP
Graph that almost match a query, identifying statements that if proven would generate
new query solutions.

3.1 Generating Hypotheses

The system we developed relaxes queries by removing query terms, then re-optomizes
the query and finds solutions to the remaining set of terms, using those solutions to
ground the relaxed queries for further analysis. In a sense we are looking for missing
links in a graph that, if added, would result in a new query solution. The variable bind-
ings for the relaxed query results give us a place to start. Each solution to a query Q is a
single binding over the set of variables V shared among N query terms. We relax Q by
removing a query term, leaving a relaxed query Q′ having some subset of variables V ′

shared among the remaining N−1 terms. The solutions to Q′ provide bindings over V ′.
We use those bindings to ground all of the original N query terms in Q. These terms
of Q grounded using the bindings from solutions to Q′ are hypotheses to be tested.
Of course, N − 1 of the hypotheses are already satisfied by the extractions, but since
extractions are themselves noisy, we subject them to hypothesis testing, too.

Each set of N query terms is a hypothesis set: if the hypotheses in a hypothesis set
can be proven, the hypothesis set constitutes a new solution to Q. If no solutions to
subqueries of size N − 1 are found, we consider subqueries of size N − 2, and so on
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down to subqueries of size N/2. (In practice we rarely go lower than N−2: the number
of hypotheses begins to explode, and they are rarely related enough to be useful). Each
relaxed subquery is dynamically optimized based on the number of term solutions and
shared variables.

For example, consider again the query from section 2.2 asking to find all terrorist
groups that were agents of bombings in Lebanon on October 23, 1983. The system
would consider five relaxations at level one, corresponding to the subqueries of length
four resulting from ablating each term in turn:

1. find all bombings in Lebanon on 1983-10-23 with agents (hypothesize that the
agents are terrorist organizations)

2. find all events in Lebanon on 1983-10-23 by terrorist orgs (hypothesize that the
events are bombings)

3. find all bombings in Lebanon on 1983-10-23 (all known terrorist orgs are hypothet-
ical agents)

4. find all bombings by terrorist orgs on 1983-10-23 (hypothesize that the bombings
were in Lebanon)

5. find all bombings by terrorist organizations in Lebanon (hypothesize that the bomb-
ings were on 1983-10-23)

If no solutions for any of the five subqueries are found, the system will attempt to
generate hypotheses for the twenty subqueries of length three, and so on.

One special case is when subquery solutions do not bind a variable. This occurs
for subqueries of length N − k for any variables that appear k (or fewer) times in the
original query. For example, if the above query produced no solutions to subqueries of
length N − 1, the system would consider subqueries of length N − 2. At this level,
we would produce a subquery in which ?t does not appear. Solutions to the subquery
would provide candidate bindings for ?b, which would generate mediatingAgent
hypotheses in which the first argument is bound, but the second is variable. Hypotheses
with variable arguments risk generating a large number of query answers improving
Recall but degrading Precision.

Finally, we note that generating hypotheses from relaxed subqueries is appropriate
for queries that are almost answerable. Hypotheses from missing terms will likely only
be useful when most of the terms in the query are not missing. Our system does not,
however, blindly accept hypotheses. They are only accepted if there is evidence for them
and confidence in the evidence above certain thresholds (see 4.3). Nevertheless, this
approach is biased toward generating more answers to queries and will likely perform
poorly when doing so is not appropriate (for example, queries for which the corpus does
not contain the answer).

4 Hypothesis Validation

Each hypothesis set from the hypothesis generator contains hypotheses in the form of
RDF statements, which, if added to the primary extraction NLP graph, would provide
a new answer to the original query. These hypotheses are not accepted simply because
they would provide new answers, rather they are targets for further, deeper processing
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that for a variety of reasons was not performed as part of primary NLP stack process-
ing. We call this deeper processing of hypothesis hypothesis validation. Only validated
hypotheses are added to the query result sets.

4.1 Architecture

All hypotheses are passed to a stack of hypothesis checkers. Each hypothesis checker
reports its confidence that the hypothesis holds and, when possible, gives a pointer to
a span of text in the target corpus that supports the hypothesis (the provenance). In the
current architecture, hypothesis checkers may also choose whether to allow a hypothesis
to flow through to the next checker. A significant property of the architecture is that an
individual hypothesis checker can be any arbitrary module capable of reporting support
for a hypothesis with confidence and provenance, including external IR systems, IE
systems, knowledge bases, reasoners or even independent question answering systems.

One of the prime motivations for this architecture is to circumscribe complex or
problematic computational tasks, such as formal reasoning or choosing between multi-
ple low-confidence extractions. When isolated to proving, supporting, or refuting indi-
vidual RDF statements, these tasks can be made more tractable by providing a goal. For
example, if we ran a tableau-based reasoner over the primary extraction NLP graph, the
reasoner would report inconsistency (see for example [3]) and fail to do anything useful.
However, when constrained to only the part of a graph that is connected to a hypothesis,
the reasoner may be used effectively. We did not use a tableau reasoner in the exper-
iments described here, it remains future work to put that together with the individual
hypothesis checkers discussed below, but the point is the same: complex computational
tasks are made more tractable by using hypotheses as goals.

4.2 Hypothesis Checkers

We have tried many hypothesis checking components. For the experiments described
here, we used only three:

Primary Extraction Graph. The original primary extraction NLP graph is itself
just one of the hypothesis checkers in our stack. By default, this means that the hy-
potheses corresponding to the N − 1 terms not ablated are guaranteed to be supported,
with the original extraction confidence and provenance. By including these terms as
hypotheses and rechecking them, our system could adjust their confidence using other
hypothesis checkers and even reject them if their confidence is low. Other extraction
graphs could also be plugged in as checkers (extraction graphs over other corpora, or
even a new extraction graph over the same corpus with different NLP stack configura-
tions). For these experiments, however, it was only possible for a hypothesis supported
by the primary graph to increase in confidence through support from the knowledge
base.

Secondary Extraction Graph. Many existing NLP components consider multiple
interpretations of the text during processing and score or rank these interpretations.
When used in a pipeline, it is very common to simply take the top interpretation and
pass that to the next stage. The individual components are typically tuned to a perfor-
mance tradeoff that maximizes F-measure. In the case of answering conjunctive queries
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over NLP graphs, we needed to explore options that would emphasize Recall, as dis-
cussed above. The secondary extraction graph is an RDF NLP Graph generated from
all the interpretations considered by the NLP Stack. In practice this can include multi-
ple mentions, types on those mentions, multiple entities, multiple types on the entities,
and multiple relations between them, and can obviously be quite large. In these experi-
ments we explored only the interpretations considered by the RelEx component, which
generates a probability of every known relation holding between every pair of mentions
within a sentence. Our secondary graphs are pruned at a particular confidence threshold
(or rank), and in our experiments we explored different confidence thresholds. Clearly
the secondary graph can have very high Recall, but extremely low Precision: for RelEx
the Recall with no threshold should approach 1 and the Precision should approach 1/|R|
(|R| is the number of known relations), since for each mention pair a probability is gen-
erated for each relation and no more than one will be correct in the ground truth. The
central hypothesis of this paper is that the secondary graph is a useful source of infor-
mation when it is used in conjunction with the primary graph to answer a query.

Knowledge Base. A third hypothesis checker is a knowledge base allowing taxo-
nomic inference as well as more complex rules. For our evaluation, the knowledge base
contained rules derived directly from the supplied domain ontology. It also contained
a small number of general, domain-independent rules (such as family relationships).
Rules derived directly from the ontology include:

– simple superclass-subclass rules (Bombing(?x)→ Attack(?x))
– simple relation-subrelation rules (hasSon(?x, ?y)→ hasChild(?x, ?y))
– simple relation inverse rules (hasChild(?x, ?y)↔ hasParent(?y, ?x))

We also derived about 40 more complex rules automatically from the ontology,
based on specialization of the domain or range of subrelations, e.g.
(hasSubGroup(?x, ?y)&HumanOrganization(?x)→ hasSubOrganization(?x, ?y)).

In other experiments [1] we used the knowledge base as a hypothesis checker to con-
firm, for example, the hypothesis eventLocation(?b, Lebanon) when the extraction
graph contains eventLocation(?b, Beirut). In the experiments described here, how-
ever, we turned this off as it requires an entity matching step (that maps text strings to
knowledge-based IDs in the background geographic knowledge base [5]), which would
have had to be run on both the ground truth and the extraction graphs. This step has its
own kinds of errors, which we wanted to remove from these experiments.

4.3 Accepting Support for Hypotheses

Each hypothesis checker provides its measure of confidence that a hypothesis holds,
making it possible to learn thresholds for accepting or rejecting hypothesis support.
This was one of the main reasons for our experimental design: the 50 manually scored
queries provided by the program did not give us a satisfactory space to tune the thresh-
old parameters. In the experiments described below, we explored this space over hun-
dreds of queries.

With a secondary graph to support hypotheses, we need two thresholds: one for the
primary graph and one for the secondary.
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Accepted hypotheses are added to the extraction graph and become part of query
results. For hypotheses generated from subqueries of length N − 1, each accepted hy-
pothesis is an RDF triple that results in a new answer to a query. For hypotheses gener-
ated from subqueries of length N − 2 or shorter, hypothesis additions may combine to
produce new query answers.

Extending the knowledge in the extraction graph with supported hypotheses may
also produce answers to other queries that had no solutions, or produce more answers to
queries that did. This does not mean an increase in Recall of course, as the hypotheses,
even if supported, might be incorrect. For the current experiments we used fully bound
hypothesis sets as complete solutions to queries, and not as additions to the primary
extraction graph.

5 Experiments

The main purpose of the paper is to present the hypothesis generation and validation
framework for NLP Graphs. The central hypothesis is that within this framework, there
is value in the secondary extraction graph for conjunctive query answering. More pre-
cisely, it is our hypothesis that the probabily of a secondary graph statement being cor-
rect increases significantly when that statement generates a new result to a conjunctive
query over the primary graph.

5.1 Experimental Setup

As discussed in 2.3, a manually annotated corpus of 169 documents was split into train,
development, and test sets of 60, 60, and 49 documents, split in a way to balance the
distribution of the domain relations (see below, however, for notes on this balance). In
total there are 48 relation types. Table 1 lists the number of instances of these relations
in the train, development and test sets. Since documents contain multiple relations, it
was not possible to balance the relation distribution perfectly.

The RelEx component was trained using gold standard mentions and types, and was
applied to the test and devtest documents also using gold mentions and types. The NLP
Graphs were generated from the RelEx output as well as gold standard coreference in-
formation, the latter forming gold standard entities that were represented as NLP Graph
nodes, with the selected relations representing links between them.

Relation Train Dev Test Relation Train Dev Test
affectedBy 317 342 204 hasMember-

HumanAgent
37 45 46

agentOf 812 847 596 hasMember-
Person

29 35 19

attendedSchool 2 3 5 hasSibling 16 9 4
awardedBy 1 3 1 hasSpouse 8 7 15
awardedTo 1 3 1 hasSub-

Organization
8 6 4

basedIn 122 93 51 instrumentOf 4 2 1
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before 14 21 10 isLedBy 139 236 118
building-
Physically-
Destroyed

21 7 9 killingHuman-
Agent

26 17 13

capitalOf 7 4 5 locatedAt 396 410 264
clientOf 23 14 14 mediating-

Instrument-
WeaponClass

15 12 4

colleague 29 23 16 near 31 22 8
diedAt 8 2 8 overlaps 4 0 3
diedOf 67 34 38 ownerOf 82 49 62
diedOn 14 8 11 participantIn 39 71 36
employedBy 201 216 170 partOf 188 236 132
eventDate 196 175 143 partOfMany 289 230 142
eventLocation 82 42 63 personKilled 2 7 1
founderOf 12 7 2 personGroup-

Killed
0 1 0

hasAgeInYears 24 24 24 populationOf 4 1 2
hasBirthDate 1 2 0 quantityOf 204 176 114
hasBirthPlace 12 6 3 rateOf 1 2 2
hasChild 28 27 31 relative 21 13 9
hasCitizenship 9 10 7 residesIn 67 37 26
hasDisease 18 28 18 spokespersonFor 17 27 4

timeOf 0 1 1
Table 1: Distribution of relations in train and test sets.

The NLP graphs can be generated by selecting relations from the NLP output in two
dimensions:

– Top vs. All: Whether to take the top scoring relation between any mention pair
(top) or all relations (all) between the pair.

– Thresh: A confidence threshold (strictly) above which relations are selected.

Clearly the same dimensions could have applied to the selection of type triples for
the NLP graph, but the type information in these experiments is from the ground truth,
so all type information from the NLP output was selected.

We refer to the graphs by document set (dev or test), top/all@threshold. Thus
devTop@.2 is the NLP Graph from the development set using top relations above a .2
confidence, and testAll@0 is the NLP graph from the test set using all relations above
0 confidence.

For development and test sets, we generated 3 NLP graphs for use as primary ex-
traction graphs, in all cases using top, and selecting relations at thresholds 0, .1, and
.2. We also generated a single NLP graph for use as secondary for each set, using the
all@0 setting.
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Precision and Recall are determined by comparing system query results to the
ground truth query results. The confidence of a query result set is the minimum confi-
dence of the statements in the result, which performed better in experiments than using
the product. Therefore for experiments with validation in a secondary graph the con-
fidence thresholds below the primary graph threshold indicate the confidence of the
secondary graph statements added to the result.

We generate a primary graph at different confidence levels when a secondary graph
is being used for validation, because it is too complex to vary the thresholds for both
graphs. For each primary graph threshold, we show the performance of different sec-
ondary graph thresholds, focussing at the space below the primary threshold (as at the
primary graph threshold the secondary and the primary graph are relatively similar, i.e.
it is rare to have more than one relation above threshold between two mentions).

We chose .2 as it was the threshold producing the max F1 score on the devset for
RelEx when measured at the mention level (as opposed to the entity level in the NLP
Graph), which was .28. We chose .1 as it was the threshold we had guessed at in the
program evaluation, before having any data to back it up.

After performing many tests and experiments tuning the system on the development
set, we ran a single experiment on the test set.

5.2 Results and Analysis

We show the results of the six experiments (Fig. 1 - 4), each one comparing a baseline,
using the primary graph only, to using the primary graph with the secondary graph for
hypothesis validation (Fig. 1, 2 and 3). The experiments are named after the primary
graph with a “+s” indicating validation in a secondary graph.

Fig. 1. F-Measure for the 0-threshold primary graph (with and without secondary graph for hy-
pothesis validation) on test and dev sets

The Recall using the secondary graph for validation is always higher than without
it, with a corresponding drop in Precision. F-measure improves across the confidence
curve, with dramatic improvement in the interesting range below the primary graph
threshold. Of particular interest is that the max F1 confidence point on the top@.1 + s
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Fig. 2. F-Measure for the .1-threshold primary graph (with and without secondary graph for hy-
pothesis validation) on test and dev sets

Fig. 3. F-Measure for the .2-threshold primary graph (with and without secondary graph for hy-
pothesis validation) on test and dev sets

Fig. 4. A comparison of the six configurations on test and dev sets for the confidence range 0− .2
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and top@.2 + s experiments in both sets occur at a threshold of .01 (note again that
below the primary threshold, the threshold value is only for statements added from the
secondary graph) .

The threshold values themselves are artifacts of how the RelEx component com-
putes its probabilities and was trained, but the result does strongly support our hypoth-
esis that the probability of a relation holding between two mentions increases signif-
icantly if that relation would complete a conjunctive query result. The low max F1
threshold has certainly given us cause to more seriously consider the “cruft” produced
at very low confidence levels that is normally discarded.

The results for top@0 in both sets also demonstrates that selecting a primary graph
at some optimal threshold is better than a high Recall graph.

In the following table we summarize our results by choosing a configuration based
on dev set performance and applying that configuration to the test set. The best per-
forming configuration on the dev set was for top@.2+ s with a threshold of 0.01 on the
secondary graph hypotheses. We can see that the difference at the chosen threshold on
the test set significantly outperforms the baseline on the same set.

Doc Set Configuration P R F
Dev top@.2 (baseline) 0.10 0.04 0.06
Dev top@.2+s@.01 0.16 0.11 0.13
Test top@.2 (baseline) 0.28 0.09 0.14
Test top@.2+s@.01 0.32 0.24 0.27

Table 2: Performance summary at chosen threshold

All the differences from baselines to results with secondary graph validation, in the
figures and tables, are statistically significant to six decimal places (paired t-test with
one-tailed distribution).

Overall performance (P, R, F) of the test set is also significantly higher than overall
performance of the development set. Upon inspection, this is due to an uneven split
of low-performing relations, in particular the locatedAt, isLedBy and employedBy rela-
tions, between the two sets. We did not look at per-relation performance in balancing
the relations, only at the total counts, since absolute performance was not our focus.

6 Related Work

Modifying queries to control Precision and/or Recall is an old and well-explored idea.
On the one hand, the area of Query Expansion [6] investigates adding terms to queries
as either conjuncts (often to improve Precision by disambiguating original query terms)
or disjuncts (to improve Recall by complementing original query terms with related
terms). Terms to add may be found through corpus analysis (for example, finding terms
that co-occur with query terms), through relevance feedback or through existing seman-
tic resources, such as thesauri or ontologies. On the other hand, Ontology-based Query
Relaxation [7] seeks to improve Recall not by deleting query terms, but by relaxing
them through generalization in a taxonomy of relations and types. For example, an orig-
inal query to find all people married to actors could be relaxed via superrelations (all
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people related to actors) or via supertypes (all people married to entertainers) or both.
In our system, the Knowledge Base hypothesis checker allows more specific relations
and types to satisfy hypotheses based on taxonomic rules from an ontology. It could
also easily reverse those rules to allow evidence of more general relations and types to
support hypotheses. Alternatively, in Query Approximation [8], a complex, conjunctive
query is evaluated by starting with a simpler query (typically a single conjunct) and suc-
cessively adding query terms. At each step, the set of solutions includes the solutions to
the original, complex query, along with (successively fewer) false positives. The goal
is to produce these approximate solutions quickly, while converging on exact solutions
given more time.

In Question Answering, document retrieval is used to produce a smaller candidate
subset for subsequent processing. Recall is preferred over Precision in performance
tradeoff for document retrieval, and incorrect answers are filtered by downstream mod-
ules [9]. To improve Recall of document retrieval in question answering, Bilotti et al.
[9] use inflectional variants of the terms in the question, to expand the query for retriev-
ing relevant documents. The final query is a conjunction of disjunct clauses, consisting
of original query term and its inflectional variants. Query expansion with inflectional
variants improves Recall of the document retrieval. Mollá et al. [10] and Mcnamee et
al. [11] also highlight the importance of high Recall information extractors in question
answering. They focus on a high-Recall Named Entity recognizer that allows allocation
of multiple Named Entity tags to the same string, to handle ambiguous entities by not
committing to a single tag; leaving it to the final answer extraction and scoring module
to filter out incorrect answers.

7 Conclusions

We have presented a framework for hypothesis generation and validation in RDF NLP
graphs. The hypotheses are generated given a query, and propose new statements to add
to the graph that would increase the number of results for the query. We have shown
that a useful way to validate such generated hypotheses is to look in the secondary
interpretations of the text considered by NLP components and ultimately discarded.

In previous work [1] we demonstrated the value of hypothesis generation and vali-
dation as a way to circumscribe reasoning tasks when employing rules and background
knowledge. In future work we plan to combine background knowledge and reasoning
with secondary graphs for validation. Another promising direction is to consider making
or breaking coreference decisions as hypotheses, and validating them with a secondary
graph and other knowledge.

One way of viewing our result is to change the role of NLP and semantic tech-
nologies in end-to-end systems. A traditional view of NLP is as a layer below that of
knowledge representation from which information flows strictly upwards. In this view,
NLP components must therefore make their best guess, without any knowledge of the
specific task at hand. In this paper, we have presented an approach that improves on
this traditional view, by allowing the knowledge layer to “go back” to the NLP layer
and ask for more targeted information about certain missing information that will help
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it complete its task. Specifically, we are able to target further consideration of discarded
interpretations when they will meet some user need (i.e. provide new results to queries).
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