
Personalised Graph-based Selection of Web APIs

Milan Dojchinovski1, Jaroslav Kuchar1, Tomas Vitvar1 and Maciej Zaremba2

1 Web Engineering Group
Faculty of Information Technology

Czech Technical University in Prague
firstname.lastname@fit.cvut.cz

2 Digital Enterprise Research Institute
National University of Ireland, Galway

maciej.zaremba@deri.org

Abstract. Modelling and understanding various contexts of users is im-
portant to enable personalised selection of Web APIs in directories such
as Programmable Web. Currently, relationships between users and Web
APIs are not clearly understood and utilized by existing selection ap-
proaches. In this paper, we present a semantic model of a Web API
directory graph that captures relationships such as Web APIs, mashups,
developers, and categories. We describe a novel configurable graph-based
method for selection of Web APIs with personalised and temporal as-
pects. The method allows users to get more control over their prefer-
ences and recommended Web APIs while they can exploit information
about their social links and preferences. We evaluate the method on a
real-world dataset from ProgrammableWeb.com, and show that it pro-
vides more contextualised results than currently available popularity-
based rankings.

Keywords: Web APIs, Web services, personalisation, ranking, service
selection, social network

1 Introduction

The rapid growth of Web APIs and a popularity of service-centric architectures
promote a Web API as a core feature of any Web application. According to
ProgrammableWeb3, a leading service and mashup directory, the number of Web
APIs has steadily increased since 2008. While it took eight years to reach 1,000
APIs in 2008, and two years to reach 3,000 in 2010, it took only 10 months to
reach 5,000 by the end of 2011 [16]. In spite of this increase, several problems are
starting to arise. Old and new not yet popular Web APIs usually suffer from the
preferential attachment problem [14], developers can only run a keyword-based
search in a service directory or they run a Google search to find Web pages that
reference or describe Web APIs. Although there exist a number of sophisticated
mechanisms for service discovery, selection and ranking, there is still a lack of

3 http://www.programmableweb.com

http://www.programmableweb.com


2

methods that would in particular take into account a wider Web APIs’ and
developers’ contexts including developers’ profiles, information who developed
Web APIs or used them in a mashup, Web APIs’ or mashups’ categories as well
as the time when an API or a mashup was developed or published. With the
popularity of Web APIs and directory services like ProgrammableWeb, it is now
possible to utilize all such information in more sophisticated service selection
methods.

In this paper we develop a novel Web API selection method that provides per-
sonalized recommendations. As an underlying dataset we create so called Linked
Web APIs, an RDF representation of the data from the ProgrammableWeb di-
rectory, that utilizes several well-known RDF vocabularies. The method has the
following characteristics: 1) social and linked–it exploits relationships among
Web APIs, mashups, categories, and social relationships among developers such
as who knows who in the ProgrammableWeb directory, 2) personalized–it takes
into account user’s preferences such as developers the user knows and preferences
that define importances of predicates, and 3) temporal–it takes into account a
time when Web APIs and mashups appeared in the graph for the first time.

We develop a method called the Maximum Activation and show how it can be
used for the Web API selection. The method calculates a maximum activation
from initial nodes of the graph (defined by a user profile), to each node from a
set where a node in the set represents a Web API candidate. We adopt the term
activation from the spreading activation method[1] and we use it as a measure
of a connectivity between source nodes (initial nodes defined by a user profile)
and a target node (a Web API candidate). We use flow networks as an underly-
ing concept for evaluation of the maximum activation in the graph. We imple-
ment the method as a Gephi plugin,4 and we evaluate it on several experiments
showing that the method gives better results over traditional popularity-based
recommendations.

The remainder of this paper is structured as follows. Section 2 describes
the underlying Linked Web APIs dataset and Section 3 describes the maximum
activation method, its definitions and the algorithm. Section 4 describes several
experiments from running the method on the Linked Web APIs dataset and a
case study that shows how a developer can use the method when creating a
mashup with various Web APIs. Section 5 describes the related work that also
includes information on how the method compares to the spreading activation
method. Finally, Section 6 concludes the paper and describes our future work.

2 Linked Web APIs

Figure 1 shows an extract of the Linked Web APIs dataset of the ProgrammableWeb,
currently the largest directory of Web APIs. The Linked Web APIs dataset rep-
resents the whole directory as an RDF graph with over 300K RDF triples. To
build the dataset we gathered data about Web APIs, mashups, their categories,

4 https://github.com/jaroslav-kuchar/Maximum-Activation-Method



3

#WifiPDX
ls:usedAPI

WifiPDX

#Google-
Geocoding-API

ls:usedAPI

foaf:knows

dc:creator

#Amazon-
eCommerce-APIJungleThingy

dc:title

dc:creator

#Andres

#Duvander

#JungleThingy

#Google-Maps-
API

ls:usedAPI

ls:usedAPI

#mapping

#amazon

#oregon

#geocoding

#shopping

#Bing-Maps-
Geocode-API

ls:usedAPI

#Busams

dc:creator

foaf:nick

busams

dc:created

"2012-01-14" "2010-12-09"

"2012-01-06"

"2011-08-09"

#GetHired–
Mobile–App

"2009-03-7"

dc:created
dc:title

"2006-04-4"

"2008-06-26"

dc:created

dc:created

dc:created

dc:created

dc:created

"2011-12-29"

dc:created

"2005-12-5"

dc:created

"2009-01-13"

Fig. 1. Excerpt from the Linked Web APIs dataset

developer profiles, and relationships among Web APIs and mashups that use
them, relationships among Web APIs, mashups and developers who developed
them, and relationships among Web APIs, mashups and categories. Moreover,
we also capture the time of the Web APIs and mashups when they appeared in
the ProgrammableWeb directory for the first time.

Note that there are other information in the ProgrammableWeb that we could
use to make the Linked Web APIs richer such as various technical information
about protocols and data formats. Also, we could better associate the data with
other datasets in the Link Data cloud and publish it to the Linked Data com-
munity. Although we plan to do this in our future work, the Linked Web APIs
dataset that we present here already provides the sufficient information for our
Web API selection method.

The Linked Web API dataset uses several well-known ontologies. Concepts
from FOAF5 ontology (prefix foaf) represent mashup developers as foaf:person
concepts with their social links, concepts from the WSMO-lite [15] ontology (pre-
fix wl) represent Web APIs as wl:service concepts and their functional category
descriptions. We also use the Dublin Core6 vocabulary (prefix dc) for properties
such as title, creator and date, and the SAWSDL[12] property sawsdl:modelReference.
Further, we create new concepts and properties for which we use the ls prefix.
We define the ls:mashup concept that represents a mashup and the ls:category
concept that represents a functional Web API/mashup category. There are fol-
lowing types of edges in the Linked Web APIs:

5 http://xmlns.com/foaf/0.1/
6 http://dublincore.org/documents/dcmi-terms/



4

1. User—User: an edge between two user nodes represented with the foaf:knows
property indicating a social link.

2. User—Mashup: an edge between a user and a mashup represented with the
dc:creator property.

3. Mashup—API: an edge between a mashup and an API represented with the
ls:usedAPI property.

4. Mashup—Category, and API—Category: an edge between a mashup/API
and a category represented with the sawsdl:modelReference property.

3 Maximum Activation Method

3.1 Definitions

Let G = (V, E , I) be a graph representing Linked Web APIs where V is a set of
nodes, E is a set of edges and I : E → N is a capacity function which associates
a capacity of an edge with a natural number. A node in V can represent an
API described by the wl:Service concept, a mashup described by the ls:Mashup
concept, a user described by the foaf:Person concept or a category described
by the ls:Category concept. An edge e ∈ E represents a mutual (bidirectional)
relationship between two nodes as follows: for a property in the Linked Web APIs
dataset we create an inverse property such that when (o1, p, o2) is a triple where
o1, o2 correspond to nodes in V and p corresponds to an edge in E , we create a
new triple (o1, p

−1, o2) where p−1 is an inverse property to p. See Section 3.3 for
additional details.

Let P = {p1, p2, ..., pn}, pi ∈ V be a set of nodes that represent a user
profile. The nodes in P may represent the user himself, nodes that the user likes
or knows or has any other explicit or implicit relationships with. Further, let
W = {w1, w2, ..., wm}, wi ∈ V be a set of nodes that represent a user request
as Web APIs candidates. The Maximum Activation method then calculates a
maximum activation ai for each Web API candidate wi ∈ W. The higher number
of the maximum activation denotes a Web API candidate with a higher rank,
that is the preferred Web API candidate over a Web API candidate with a lower
maximum activation.

We denote an activation that can be sent between two nodes linked with an
edge e as a natural number i(e) ∈ N. The activation sent through an edge cannot
exceed the capacity of the edge defined by the capacity function

I(ei,t) = S(ei) ∗ A(ei,t) (1)

where S(ei) ∈ {x ∈ N|0 ≤ x ≤ 100} is a user preference function that defines
an importance of the edge ei (i.e., how the user sees an importance of semantics
represented by the edge) and A(ei,t) is the exponential ageing function. An im-
portance S(ei) < 50 indicates that the user does not prefer the edge’s semantics,
an importance S(ei) > 50 indicates the the user prefers the edge’s semantics
and the importance S(ei) = 50 indicates a neutral value. A user may chose an



5

arbitrary number of edges for which he/she defines preferences. Edges for which
the user does not define any preferences have a default preference 50.

Further, we define the exponential ageing function as

A(ei,t) = A(ei,to) ∗ e−λt (2)

where A(ei,t) is an age of the edge ei at time t, A(ei,to) is the initial age of the
edge ei at the time the edge appeared in the graph G (i.e., values of dc:created
property) and λ is an ageing constant. The ageing constant allows to configure
an acceleration of the ageing process. Since our method gives better results for
better connected nodes in the graph, the ageing function allows to control an
advantage of “older” nodes that are likely to have more links when compared
to “‘younger” ones (see Section 4.1 for discussions on how we setup the ageing
constant and Section 4.3 and 4.4 for differences in results with and without the
ageing function applied).

Note that we currently only apply the ageing function to edges that are
linked with nodes representing Web APIs and mashups. In other words, we use
a creation date of a Web API or a mashup to evaluate the ageing function of
any edge that links with the Web API or the mashup respectively. We assume
that the Web API or the mashup was created at the same time along with all
its edges that connect it to other nodes in the graph. For all other edges it holds
that A(ei,t) = 1.

3.2 Algorithm

We calculate the Maximum Activation according to the following algorithm.

Inputs:

– Graph G = (V, E , I) constructed from the Web Linked APIs dataset.
– A user profile P = {p1, p2, ..., pn}.
– Web API candidates W = {w1, w2, ..., wm}.
– A user preference function S(ei).

Output:

– A set of maximum activations {ai} evaluated for each wi ∈W .

Uses:

– A set C = {e1, e2, ..., ek}, ei ∈ E .
– A function FF that represents the Ford-Fulkerson algorithm [8].

Algorithm:

1: // create a virtual source node p′

2: add node p′ to V
3: for all pi ∈ P do
4: add edge e(p′, pi) to E , S(e)← 100000, A(e)← 1
5: end for
6: // calculate a maximum activation ai from



6

7: // a virtual node p′ to every Web API candidate wi
8: for all wi ∈W do
9: C ← FF (p′, wi,G)

10: ai ←
∑
ei∈C(I(ei))

11: end for

In lines 2–5, the algorithm first creates a virtual node representing a single source
node with links connecting the virtual node and all other nodes from the user
profile. Any edge that connects the virtual node with any other node in the graph
has a capacity set to a very large value so that the edge does not constrain the
maximum activation. In lines 8–11, the algorithm finds a maximum activation
for each Web API candidate wi from the virtual node p′. For this we use the
Ford-Fulkerson algorithm to find a maximum activation from the source node
(i.e., the virtual node) to the target node (i.e., a Web API candidate). We do
not formaly describe the FF algorithm here, however, for the purposes of later
discussion in Section 3.3 we provide its brief description: the FF algorithm first
sets the initial activation for each edge to 0 and tries to find an improving path
on which it is possible to increase the activation by a minimum value greater
then 0. If such path is found, the algorithm increases activations on every edge
on the path and tries to find another path. When no more path is found, the
algorithm ends. The result of FF is the set C that contains every last edge from
all paths from the source towards the target when an improving path is not
possible to find. The maximum activation is the sum of all activations on edges
from C. In line 10, the algorithm finally calculates the maximum activation as
a sum of all activations of edges in C.

3.3 Discussion

Meaning of Maximum Activation Value. As we noted earlier, we interpret
the maximum activation of the graph as a measure that indicates how well the
source nodes are connected with the target. In general, the more improving
paths exist between the source and the target, the higher maximum activation
we can get. However, the value of the maximum activation is also dependent on
constraints and the creation time of Web APIs and mashups along the improving
paths when the ageing function is applied.

Maximum Activation and Edges in C. The edges in C are constraining the
maximum activation which means that if capacities of such edges increase, the
maximum activation can be increased. Note, however, that we assign capacities
based on semantics of egdes thus by changing a capacity on an edge in C, we
also change capacities on other edges not in C. Running the algorithm again
on the graph with new capacities will lead to a different set C and different
maximum activation. In other words, it does not hold that increasing a capacity
on any edge in C will lead to a higher maximum activation. This also means that
maximum activation that our algorithm evaluates has a global meaning while
activations on individual edges do not have any meaning. Defining capacities for
individual edges is the subject of our future work.



7

Graph G Construction. When we construct the graph G from the Linked Web
APIs dataset, for every predicate we create a bidirectional edge. A graph with
bidirectional edges provides a richer dataset for maximum activation evaluation.
A large graph with unidirectional edges may contain many dead end paths that
may limit the number of improving paths that the algorithm would be able to
find from the source to the target nodes. Evaluation of maximum activation on
such graph would not provide many interesting results.

4 Experiments

In this section we present several experiments and their results7 that use maxi-
mum activation for the Web APIs selection.

For our experiments we use the full Linked Web APIs dataset. The dataset
contains all user profiles for users that created at least one mashup. We also
extracted profiles on all categories, tags, mashups and Web APIs. The snapshot
we use covers the period from the first published API description in June 2005,
till May 18th, 2012. The snapshot includes 5 988 APIs, 6 628 mashups and
2 335 user profiles. In the experiments we addressed following questions:

– What is the impact of user preference function on results of the maximum
activation?

– How does the ageing factor influence the maximum activation?
– How can the popularity of an API evolve over time?
– How to make the process of building a mashup more personalised and con-

textualised?

4.1 Setting the Ageing Constant

We experimentally set the ageing constant to a value λ = 0.1 and the age
period to one week (t = week). Our graph contains data since June 2005, that
is approximately 360 weeks. Figure 2 depicts an effect on ageing function for
different λ. Note that the higher the constant is, the algorithm promotes the
more recently added APIs and Mashups.

4.2 Impact of the User Preference Function

The user preference function defines an importance of the edge, that is how the
user sees the importance of semantics represented by the edge. For example, the
user can give a higher importance to edges representing a friendship (foaf:knows)
than to edges between mashups and Web APIs (ls:usedAPI). The importance
values, along with the chosen edge ageing constant λ, are used to compute the
total capacity of an edge (see definition (1)). To study the influence of an im-
portance value on a single edge, we were gradually increasing the value from 0

7 Full results of the experiments are available at http://goo.gl/GKIbo

http://goo.gl/GKIbo


8

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age (# weeks)

A
ge

in
g 

fu
nc

tio
n

λ = 0.001
λ = 0.01
λ = 0.1

Fig. 2. Ageing function

to 100 by a step of 5 and fixed importance values of all other edges to 50. We
run this experiment for 3 different well-known APIs, namely Google Maps, Bing
Maps and Yahoo Maps.

Figure 3 shows the experiment results: the importance value on the edge
API–Mashup (Fig.3(b)) and Mashup–User (Fig.3(g)) does not have influence
on the maximum activation. Slight influence has the importance value on edges
Mashup–Category (Fig.3(f)), User–Mashup (Fig.3(h)) and User–User (Fig.3(i)).
Fig.3(a) further shows that different importance values have various ranges of
influence: the importance value for the API–Category has influence in a range
0−5 for Yahoo Maps API, 0−10 for Bing Maps API, and 0−15 for Google Maps
API, while higher importance values do not have any influence as the maximum
activation is limited by the capacities of other types of edges.

4.3 Impact of the Ageing Constant λ

The ageing constant λ is a configurable parameter which influences the value
of assigned edge capacity. The higher the λ is, the more recent edges will be
preferred – that is, the older edges will have a lower capacity. In different datasets
edges can occur more or less frequently therefore appropriate value for the λ
should be set. Setting high λ in datasets where the edges occur less frequently
may lead to very low edge capacities and consequently to the low activation
value. In other words, the ageing constant λ makes the selection method more
adaptable to different datasets.



9

60
00

80
00

10
00

0

Preference of edge

A
ct

iv
at

io
n

25 50 75 100

Google Maps API
Bing Maps API
Yahoo Maps API

(a) API – Category

70
00

80
00

90
00

11
00

0

Preference of edge

A
ct

iv
at

io
n

25 50 75 100

Google Maps API
Bing Maps API
Yahoo Maps API

(b) API – Mashup

40
00

80
00

12
00

0
16

00
0

Preference of edge

A
ct

iv
at

io
n

25 50 75 100

Google Maps API
Bing Maps API
Yahoo Maps API

(c) Category – API

60
00

10
00

0
14

00
0

Preference of edge

A
ct

iv
at

io
n

25 50 75 100

Google Maps API
Bing Maps API
Yahoo Maps API

(d) Category – Mashup

0
20

00
60

00
10

00
0

Preference of edge

A
ct

iv
at

io
n

25 50 75 100

Google Maps API
Bing Maps API
Yahoo Maps API

(e) Mashup – API

70
00

80
00

90
00

11
00

0

Preference of edge

A
ct

iv
at

io
n

25 50 75 100

Google Maps API
Bing Maps API
Yahoo Maps API

(f) Mashup – Category

70
00

80
00

90
00

11
00

0

Preference of edge

A
ct

iv
at

io
n

25 50 75 100

Google Maps API
Bing Maps API
Yahoo Maps API

(g) Mashup – User

70
00

80
00

90
00

11
00

0

Preference of edge

A
ct

iv
at

io
n

25 50 75 100

Google Maps API
Bing Maps API
Yahoo Maps API

(h) User – Mashup

70
00

80
00

90
00

11
00

0

Preference of edge

A
ct

iv
at

io
n

25 50 75 100

Google Maps API
Bing Maps API
Yahoo Maps API

(i) User – User

Fig. 3. Impact of Importance values

For this experiment we chose a random user Dave Schappell8 and we calcu-
lated the maximum activation for each API candidate in the “mapping” category.
We evaluated the results in the period from 1st of June 2009 (shortly after the
user registered his profile) till 1st of June 2012 with a period of age set to 1
week. We set the ageing constant λ to values 0.01 and 0.1. By setting the ageing
constant we are able to accelerate the ageing process, that is we get a lower
capacity on older edges. Fig.2 shows, setting the ageing constant to 0.1 we get
higher maximum activation for edges that appeared in the last 50 weeks, and
setting it to 0.01 in the last 350 weeks.

Table 1 shows the configuration of importance values for various types of
edges for this experiment and Table 2 and 3 shows the results of this experiment
for λ set to 0.01 and 0.1 respectively. In these tables, the“PW rank” column
shows a popularity-based ranking used by the ProgrammableWeb which is only
based on a number of mashups used by an API. Google Maps API is the highest
ranked API by our method (for both λ=0.01 and λ=0.1) and also is the highest
ranked by the Programmable Web popularity-based method. For λ = 0.01, the

8 http://www.programmableweb.com/profile/daveschappell



10

Table 1. Importance Value Configuration

Edge name Importance value Edge name Importance value

API–Category 50 Mashup–Category 70
API–Mashup 50 Mashup–User 50
Category–API 70 User–Mashup 90
Category–Mashup 20 User–User 90
Mashup–API 70 / /

Table 2. Summarised ranking results with λ=0.01

Node ID API name Date created
Max-Activation
λ = 0.01

PW
rank

value rank

2053 Google Maps API 2005-12-05 5559 1 1
2041 Google Earth API 2008-06-01 1080 2 5
2057 Google Maps Data API 2009-05-20 1043 3 8
2052 Google Geocoding API 2010-12-09 1028 4 11
3032 Microsoft Bing Maps API 2009-06-09 853 5 2
2060 Google Maps Flash API 2008-05-17 792 6 6
5827 Yahoo Geocoding API 2006-02-14 715 7 4
5836 Yahoo Maps API 2005-11-19 707 8 3
493 Bing Maps API 2009-06-09 662 9 10
2070 Google Places API 2010-05-20 553 10 18

Table 3. Summarised ranking results with λ=0.1

Node ID API name Date created
Max-Activation
λ = 0.1

PW
rank

value rank

2053 Google Maps API 2005-12-05 503 1 1
5531 Waytag API 2012-04-27 210 2 230
4330 Scout for Apps API 2012-04-20 190 3 202
4535 Google Geocoding API 2010-12-09 184 4 11
3815 Pin Drop API 2012-03-27 135 5 191
5950 Zippopotamus API 2012-04-26 123 6 233
5825 Yahoo Geo Location API 2012-04-23 120 7 230
1836 FreeGeoIP API 2012-03-29 112 8 116
5156 Trillium Global Locator API 2012-04-18 111 9 109
1430 eCoComa Geo API 2012-05-15 108 10 108

method favors the recent APIs but also does not ignore APIs that were actively
used in the past 350 months (approx. 7 years).

From the results in Table 3 it is possible to see that the ageing constant
λ = 0.1 promotes newer APIs while at the same time it does not ignore the
all-time popular APIs such as Google Maps API and Google Geocoding.



11

4.4 Popularity of APIs over Time

In this experiment we examine a popularity of 3 APIs from the “mapping”
category for the user Dave Schappell in different points in time. We use the
configuration in Table 1 and the ageing constant λ set to values 0.01 and 0.1.

10
00

30
00

50
00

Time

P
op

ul
ar

ity

01−06−2009 01−06−2010 01−06−2011 01−06−2012

1

2

Google Maps
Bing Maps
Yahoo Maps

(a) With ageing constant λ = 0.01

20
0

40
0

60
0

80
0

10
00

Time

P
op

ul
ar

ity

01−06−2009 01−06−2010 01−06−2011 01−06−2012

1 2

3

4

Google Maps
Bing Maps
Yahoo Maps

(b) With ageing constant λ = 0.1

Fig. 4. API popularity over Time

The results show that the Google Maps API has the highest popularity in
both cases for the ageing constant set at 0.01 and 0.1. From Figure 4(a) we
can see that the popularity of Yahoo Maps API and Bing Maps API follows
the popularity of the Google Maps API until the time marked with (1) and
(2). After the times (1) and (2), a popularity of the two APIs starts to fall.
Around December 2010 and January 2012 the popularity of Yahoo Maps API
experienced minimal activation growth due to several new mashups that were
created and used this API.

Figure 4(b) shows a popularity of the three APIs with a more strict edge
ageing. After the first half year, when the popularity of the 3 APIs is nearly
the same, the popularity of the Google Maps API is starting to increase until
the time marked with (1) and stays at this level until the time marked with
(2). Between the times (2) and (4) Google Maps API gained a popularity up to
maximum activation of 1 129, however, it also started to lose some activation
due to a less number of mashups that were using this API. On the other hand,
popularity of the Yahoo Maps API increased around December 2010 (3) due to
its more intensive usage. As we can see, in certain cases, by using the ageing
function we can get better results than the PW’S popularity-based ranking.

4.5 Case Study

In this section we present a case study for personalised API selection to illus-
trate capabilities of our maximum activation method. We have a developer who
wants to improve tourists’ experience in New York, USA by creating the Visi-
tor Mashup. The Visitor Mashup should aggregate information about different
events and information about restaurants in the city and in the area of New



12

York. Information about various points of events and restaurants should be lay-
ered on the map and dynamically updated when tourists change their locations
and new events and restaurants become available.

Developer starts the process of building the Visitor Mashup by identifying
groups of relevant APIs. As he progresses and selects APIs, the ranking pro-
cess becomes more personalised and contextualised. The process of creating the
Visitor Mashup is described by following steps when in each step the developer
selects one API:

– Maps API. Developer builds his profile adding “maps” and “location” cat-
egories to it. He assigns a high importance value to the “API–Category”.
Table 4 shows the highest ranked results: Google Maps, Microsoft Bing Maps
and Yahoo Maps. The developer decides to select the Google Maps API.

Table 4. Summarised ranking results for Maps API

Node ID API name
Date created

Max-Activation
λ not set

Max-Activation
λ = 0.01

PW
rank

value rank value rank

2053 Google Maps API 2005-12-05 13720 1 6509 1 1
3032 Bing Maps API 2009-06-09 3720 2 238 2 10
5836 Yahoo Maps API 2005-11-19 2980 3 172 3 3

– Events API. The developer further searches for events API by updating
his profile with “events” category, adding “Google Maps API” and preserv-
ing “maps” and “location” categories. Further, he increases an importance
value of the “Mashup–API”. Table 5 shows highest ranked results: Seatwave,
Eventful and Upcoming.rg. The developer selects Seatwave API.

– Restaurant API. The developer searches restaurants API by adding “‘food”,
“restaurants” and “menus” categories to his profile. This time the developer
decides to use his social links and to look for APIs used by his friends de-
velopers that he adds to his profile. Table 6 shows the highest ranked APIs
SinglePlatform, Menu Mania and BooRah. The developer selects SinglePlat-
form API for restaurant information and recommendations.

Table 5. Summarised ranking results for Events API

Node ID API name
Date created

Max-Activation
λ not set

Max-Activation
λ = 0.01

PW
rank

value rank value rank

4348 Seatwave API 2012-02-28 940 3 842 1 4
1578 Eventful API 2005-10-31 3930 1 710 2 1
5371 Upcoming.rg API 2005-11-19 3220 2 411 3 2



13
Table 6. Summarised ranking results for Restaurant API

Node ID API name
Date created

Max-Activation
λ not set

Max-Activation
λ = 0.01

PW
rank

value rank value rank

4522 SinglePlatform API 2012-01-30 150 2 125 1 6
2980 Menu Mania API 2009-12-05 220 1 65 2 1
611 BooRah API 2008-10-31 120 3 30 3 3

5 Related Work

Graph-based representation of services is a relatively new approach. The authors
in [2] propose service selection based on previously captured user preferences
using the “Follow the Leader” model. In [14] the authors construct collabora-
tion network of APIs and propose a social API Rank based on the past APIs’
utilisations. Other approaches that rank services based on results from social
network-based analyses in social API networks can be found in [17] and [13].

A particular method that relates to our work is the already mentioned spread-
ing activation. It is a graph-based technique, originally proposed as a model of
the way how associative reasoning works in the human mind [4]. The spreading
activation requires directed semantic network, e.g. an RDF graph [5,9,7]. The
inputs of the basic spreading activation algorithm are number of nodes with an
initial activation which represent a query or interests of a user. In sequence of
iterations initial (active) nodes pass some activation to connected nodes, usually
with some weighting of connections determining how much spread gets to each.
This is then iterated until some termination condition is met. The termination
conditions is usually represented as a maximum number of activated nodes or a
number of iterations. After the algorithm terminates, activated nodes represent
a similar nodes to the initial set of nodes.

Compared to our maximum activation method, the spreading activation does
not guarantee an activation of a particular node while our method always assigns
an activation if there exists an improving path between source and target nodes.
Although there exist constrained spreading activation methods which utilise se-
mantics of edges [6], no version of the spreading activation takes into account
the “age” of edges as our method does. The maximum activation is better suited
for the Web API selection mainly due to following reasons: 1) it is not known
at which nodes the spreading activation terminates while the Web API selection
problem uses Web API candidates as an input (target nodes), 2) the spreading
activation has a local meaning of activations that indicates a measure that can
be used for recommendations on data whereas maximum activation uses the
value as a global measure of connectivity from source to target nodes.

There are other works in the area of Web Service discovery and selection in-
cluding QoS selection [10,18], collaborative and content-based filtering methods
[3,20,11,19] which are less relevant.



14

6 Conclusion and Future Work

A popularity and a growing number of Web APIs and mashups require new
methods that users can use for more precise selection of Web APIs. Current
approaches for searching and selecting Web APIs utilize rankings based on Web
APIs popularity either explicitly expressed by users or a number of Web APIs
used in mashups. Such metrics works well for the large, widely-known and well-
established APIs such as Google APIs, however, they impede adoption of more
recent, newly created APIs. In order to address this problem we proposed a
novel activation-based Web API selection method which takes into account a
user profile and user’s preferences, temporal aspects (the creation time of Web
APIs and mashups) and social links between users. While existing popularity-
based rankings use a single-dimensional ranking criteria (i.e., a number of APIs
used in mashups), our method uses multi-dimensional ranking criteria and with
help of graph analysis methods it provides more precise results. The method
requires a set of Web API candidates, a user profile and evaluates a ranking for
all Web API candidates for the given user profile. The Web API candidates may
result from a service discovery task that usually evaluates a match based on a
coarse-grained search request. Service discovery requests may be represented as
a functional category, for example, the discovery returns all services in the same
category such as a mapping category.

In our future work we want to extend the method so that we can assign
capacities to individual edges. In cooperation with ProgrammableWeb.com, we
also plan to improve the Linked Web APIs dataset and eventually make it avail-
able in the Linked Data cloud. We want to enrich this dataset with user profiles
from traditional social networks. We also plan to incorporate to our method var-
ious social network analysis metrics evaluated on the Linked Web APIs dataset.
Last but not least we want to evaluate the method on datasets from the Linked
Data cloud.

Acknowledgement. This work was supported by the Czech Technical Uni-
versity grant number SGS12/093/OHK3/1T/18 and the In-Coming Scholarship
with application number 51100570 provided by the International Visegrad Fund.
We also thank to ProgrammableWeb.com for supporting this research.

References

1. N. M. Akim, et al. Spreading activation for web scale reasoning: Promise and
problems. In WebSci. 2011.

2. J. Al-Sharawneh and M.-A. Williams. A social network approach in semantic web
services selection using follow the leader behavior. In Enterprise Distributed Object
Computing Conference Workshops, 2009. EDOCW 2009. 13th, pp. 310 –319. sept.
2009.

3. F. Le andcue and. Combining collaborative filtering and semantic content-based
approaches to recommend web services. In Semantic Computing (ICSC), 2010
IEEE Fourth International Conference on, pp. 200 –205. sept. 2010.



15

4. J. R. Anderson. A spreading activation theory of memory. Journal of Verbal
Learning and Verbal Behavior, 22:261–295, 1983.

5. S. Choudhury, J. Breslin, and A. Passant. Enrichment and ranking of the youtube
tag space and integration with the linked data cloud. The Semantic Web-ISWC
2009, pp. 747–762, 2009.

6. F. Crestani. Application of spreading activation techniques in information retrieval.
Artificial Intelligence Review, 11:453–482, 1997.

7. A. Dix, et al. Spreading activation over ontology-based resources: from personal
context to web scale reasoning. International Journal of Semantic Computing,
4(1):59, 2010.

8. L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399404, 1956.

9. A. Freitas, et al. Querying linked data using semantic relatedness: a vocabulary
independent approach. Natural Language Processing and Information Systems, pp.
40–51, 2011.

10. M. Godse, U. Bellur, and R. Sonar. Automating qos based service selection. In
Web Services (ICWS), 2010 IEEE International Conference on, pp. 534 –541. july
2010.

11. Y. Jiang, J. Liu, M. Tang, and X. Liu. An effective web service recommendation
method based on personalized collaborative filtering. In Web Services (ICWS),
2011 IEEE International Conference on, pp. 211 –218. july 2011.

12. J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell. Sawsdl: Semantic annotations
for wsdl and xml schema. Internet Computing, IEEE, 11(6):60 –67, nov.-dec. 2007.

13. M. Shafiq, R. Alhajj, and J. Rokne. On the social aspects of personalized ranking
for web services. In High Performance Computing and Communications (HPCC),
2011 IEEE 13th International Conference on, pp. 86 –93. sept. 2011.

14. R. Torres, B. Tapia, and H. Astudillo. Improving web api discovery by leveraging
social information. In Web Services (ICWS), 2011 IEEE International Conference
on, pp. 744 –745. july 2011.

15. T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel. WSMO-Lite Annotations for
Web Services. In ESWC, pp. 674–689. 2008.

16. T. Vitvar, S. Vinoski, and C. Pautaso. Programmatic interfaces for web applica-
tions, guest introduction (to appear). IEEE Internet Computing, Jul/Aug 2012.

17. S. Wang, X. Zhu, and H. Zhang. Web service selection in trustworthy collabora-
tion network. In e-Business Engineering (ICEBE), 2011 IEEE 8th International
Conference on, pp. 153 –160. oct. 2011.

18. S. Yau and Y. Yin. Qos-based service ranking and selection for service-based
systems. In Services Computing (SCC), 2011 IEEE International Conference on,
pp. 56 –63. july 2011.

19. Q. Zhang, C. Ding, and C.-H. Chi. Collaborative filtering based service ranking
using invocation histories. In Web Services (ICWS), 2011 IEEE International
Conference on, pp. 195 –202. july 2011.

20. Z. Zheng, H. Ma, M. Lyu, and I. King. Wsrec: A collaborative filtering based web
service recommender system. In Web Services, 2009. ICWS 2009. IEEE Interna-
tional Conference on, pp. 437 –444. july 2009.


	Personalised Graph-based Selection of Web APIs

