
Performance Heterogeneity and Approximate
Reasoning in Description Logic Ontologies

Rafael S. Gonçalves, Bijan Parsia, and Uli Sattler

School of Computer Science
University of Manchester

Manchester, United Kingdom

Abstract. Due to the high worst case complexity of the core reasoning
problem for the expressive profiles of OWL 2, ontology engineers are of-
ten surprised and confused by the performance behaviour of reasoners on
their ontologies. Even very experienced modellers with a sophisticated
grasp of reasoning algorithms do not have a good mental model of rea-
soner performance behaviour. Seemingly innocuous changes to an OWL
ontology can degrade classification time from instantaneous to too long
to wait for. Similarly, switching reasoners (e.g., to take advantage of spe-
cific features) can result in wildly different classification times. In this
paper we investigate performance variability phenomena in OWL ontolo-
gies, and present methods to identify subsets of an ontology which are
performance-degrading for a given reasoner. When such (ideally small)
subsets are removed from an ontology, and the remainder is much easier
for the given reasoner to reason over, we designate them “hot spots”. The
identification of these hot spots allows users to isolate difficult portions
of the ontology in a principled and systematic way. Moreover, we devise
and compare various methods for approximate reasoning and knowledge
compilation based on hot spots. We verify our techniques with a select
set of varyingly difficult ontologies from the NCBO BioPortal, and were
able to, firstly, successfully identify performance hot spots against the
major freely available DL reasoners, and, secondly, significantly improve
classification time using approximate reasoning based on hot spots.

1 Introduction

Reasoning tasks on ontologies expressed in a rich description logic such as that
underlying OWL 2 have a high worst case complexity. As a consequence, rea-
soning time can be highly unpredictable: seemingly innocuous changes to an
ontology might shift reasoning time from seconds to days; different reasoners
might have wildly different behaviour on the same input. Even seasoned rea-
soner developers do not have a mental performance model sufficient to deal with
many, particularly novel, cases (indeed, this fact keeps reasoner optimisation
research a lively area).

Mere high worst case complexity, of course, does not entail unpredictability.
The difficulty of determining the satisfiability of propositional k-CNF formulae
(the k-SAT problem), for example, is highly predictable by attending to the
“density” (i.e., the ratio of number of clauses to number of distinct variables)

of a formula. Not only is it predictable, but there is an increasingly sophisti-
cated theoretical understanding of this behaviour. This predictability has been
observed in various modal logics which correspond to the description logics com-
monly used as ontology languages [14, 10]. However, several observations belie
the utility of these results: 1) Even for comparatively simple logics such as ALC
the number of parameters becomes unwieldy: while propositional logic has two
main parameters (for a given size, k!) — number of clauses (L) and number of
variables (N) — ALC adds (at least) modal depth (d), the number of roles (i.e.,
modalities, m), and the proportion of modal to propositional atoms [10]. 2) The
inputs are highly regimented and bear little relationship to the sorts of formulae
found in practice, especially in manually crafted artifacts such as ontologies. For
example, all ontologies have axioms, not just concept expressions, these axioms
often “break up” complex concepts, and reasoners exploit this fact.1 Thus, to
predict behaviour of realistic or naturally occurring ontologies, we need to un-
derstand even more parameters (perhaps dozens), and normalizing away that
complexity is unlikely to be helpful. 3) Reasoners have different suites of opti-
mizations and even underlying calculi, thus respond differently to these inputs.

Together, these observations suggest that users crafting ontologies are likely
to be surprised2 by the enormous variation in performance behaviour which does
not relate intuitively to the changes they make (either in the ontology or in the
reasoner used). Three basic phenomena startle users: 1) An ontology which takes
seconds to classify3 in one reasoner, effectively fails to terminate with another.
2) Ontologies of similar size and apparent complexity take wildly different times
to classify on the same reasoner. 3) Apparently innocuous changes to a single
ontology result in large increases (or decreases) in classification time.4 Of course,
the primary negative phenomenon is excessive reasoning time.

The most prominent, principled way to cope with this problem is to shift to
a less expressive logic, such as OWL EL, for which classification is decidable in
polynomial time. Reasoning in EL (and similar logics) is not only polynomial (in
general) but has proven to be rather robust to novel input [1, 2]. This move is
not always possible, as it involves severe limitations on what can be expressed.
Similarly, approximate reasoning (i.e., giving up on soundness or completeness)
can make reasoning performance significantly better and more predictable, but
at the cost of increased uncertainty about the results [18, 16, 15]. In practice,
users often modify their ontologies based on folk wisdom (“negation is hard”,
“inverses are hard”), on bespoke advice from reasoner developers, or randomly.

1 “In realistic KBs, at least those manually constructed, large and complex concepts
are seldom described monolithically, but are built up from a hierarchy of named
concepts whose descriptions are less complex.”[9]

2 “[Reasoner] performance can be scary, so much so, that we cannot deploy the technol-
ogy in our products.” — Michael Shepard http://lists.w3.org/Archives/Public/

public-owl-dev/2007JanMar/0047.html
3 Throughout, we focus on classification as the key reasoning task, as it is the most

prevalent service invoked by ontology developers.
4 Esp. distressing are removals that increase time, and additions which decrease it

dramatically.

We need a better understanding of reasoning performance variability, or at
least methodologies for analyzing it in particular cases. The contributions of
this paper are as follows: for an ontology O that a reasoner R takes ‘too long’ to
classify, we have designed and thoroughly evaluated (1) a technique for analyzing
the performance variability of R on O, (2) a technique to isolate subsets of O
that contribute negatively to R’s high classification time, so called hot spots, and
(3) a series of techniques to approximate the hot spot in O.

Firstly, we have verified, via technique (1), that there exist two kinds of
performance profiles; an ontology-reasoner pair can be performance “heteroge-
neous” or performance “homogeneous”, depending on whether there are certain
kinds of performance variability between subsets of the ontology. Secondly, we
identified very small subsets of an ontology whose removal causes a significant
decrease in classification time, i.e., hot spots, using technique (2). Indeed we
show that performance heterogeneous ontology-reasoner pairs are highly likely
to have such subsets which are detectable by our methods. Thirdly, and finally,
we show that if there is a hot spot for an ontology-reasoner pair, then we can
approximate it in such a way that our criteria for a hot spot (i.e., classification
time boost and size) are maintained.

2 Preliminaries

We assume the reader to be reasonably familiar with ontologies and OWL [22],
as well as the underlying description logics (DLs) [8]. An ontology O is a set of
axioms, and its signature (the set of individuals, concept and role names used)

is denoted Õ. We use the notion of a locality-based module [5], which is a subset
of an ontology O that preserves all consequences of O w.r.t. to a signature Σ.
An x-module M extracted from an ontology O for a signature Σ is denoted x-
mod(Σ,O), for x one of >⊥*, > or ⊥. A justification J of a consequence α is a ⊆-
minimal subset of an ontologyO that is sufficient for α to hold [11]. The reasoning
time of an ontology O using reasoner R, denoted RT(O, R),5 comprises the time
for consistency checking, classification (computing atomic subsumptions) and
coherence (concept satisfiability). The set of atomic subsumptions resulting from
the classification of an ontology O is denoted Cl(O).

3 Materials

In order to test our methods we need a reasonable corpus of “problem” on-
tologies. We derived one from the NCBO BioPortal, a large collection of user
contributed, “working” ontologies covering a wide range of biomedical domains
[13]. We gathered all ontologies from the BioPortal, and performed a reasoner
performance test across this corpus. Four major, freely available DL reasoners
were used: Pellet (v2.2.2) [20], HermiT (v1.3.6) [19], FaCT++ (v1.5.3) [21], and
JFact (v0.9).6 The experiment machine is an Intel Xeon Quad-Core 3.20GHz,

5 When R is clear from the context, we also use RT(O).
6 http://jfact.sourceforge.net/

with 32GB DDR3 RAM dedicated to the Java Virtual Machine (JVM v1.5). The
system runs Mac OS X 10.6.8, all tests were run using the OWL API v3.3 [7].

The entire BioPortal corpus contains 216 ontologies. We discarded all ontolo-
gies with reasoning times, for all reasoners, below 60 seconds (i.e., the “easy”
ontologies). This leaves 13 ontologies, 3 of which did not classify within 10 hours:
the IMGT7 ontology with Pellet, GALEN8 with all reasoners, and GO-Ext.
(Gene Ontology Extension),9 with FaCT++ and JFact.

The naive approach to determining heterogeneity is to enumerate the “ac-
ceptably” small subsets of the ontology and measure the classification time for
each. Given that our ontologies range from 100s to over 100,000 axioms, this
is obviously infeasible. Random testing of acceptably small subsets might be
effective assuming that a sufficiently large proportion of those subsets were, in
fact, hot spots, though our preliminary experiments in this direction were un-
promising. Instead, we performed two sorts of heterogeneity detection. In the
first, “coarse grained” method, we classify ontology-reasoner pairs as perfor-
mance heterogeneous or homogenous by attending to performance fluctuations
(or lack thereof) over relatively large, evenly increasing subsets of the ontology.
In the second, we apply two simple heuristics for selecting candidate subsets, and
then verify whether they conform to our hot spot criteria. The second method
directly verifies our heterogeneity condition.

4 Coarse Grained Prediction

For current purposes, we focus on performance variability of a single reasoner
for a given ontology. In particular, we are always examining the difference in
reasoning time of select subsets of a given, hard-for-a-specific-reasoner ontology.
We do this for several reasons: 1) it simulates a common user scenario (e.g.,
editing or trying to “optimize” an ontology) and 2) we are investigating the
background assumption that ontologies which are difficult (e.g., approach the
worst case) are often so in a “fragile” way, i.e., their performance is sensitive to
small changes.

We say that an ontology is performance homogenous for a reasoner if there
is a linear factor L and variable k such that for allM⊆ O and for k · |M | = |O|,
we have that L · k · RT(M) ≈ RT(O). An ontology which is not performance
homogeneous we call performance heterogeneous. It is important to note that,
in both cases, the performance profile of the ontology and its subsets may be
predictable (even if we currently do not know how to predict it).

In this experiment, each ontology is divided into 4 and 8 random subsets
of equal size, and the classification times of these subsets as increments are
measured (i.e., we measure, for the 4-part division, RT(O1), RT(O1 ∪ O2),
RT(O1 ∪ O2 ∪ O3), RT(O), where O1,O2,O3 are subsets of O). Both mea-

7 http://www.imgt.org/IMGTindex/ontology.html
8 http://www.co-ode.org/galen/
9 http://www.geneontology.org/

surements are carried out several times per ontology (at least 10, though often
more), where each time the list of axioms in O is shuffled.

Note that we are testing a very small number of subsets of each ontology,
so, in principle, that we see “smooth” behaviour could be due to insufficient
sampling. However, because each increment is rather large, we hope that it will
contain (in a behaviour exhibiting way) any hot spots.

Overall 4 out of 13 ontology/reasoner pairs exhibit roughly linear perfor-
mance growth in our tests (see Figures 1c and 1d for characteristic graphs).
GALEN proved infeasible to work with (even only half the ontology gave rea-
soning times of over 10 hours), and was discarded. The remainder exhibited
non-linear and sometimes highly variable performance behaviour. For example,
Figure 1e shows that even the very coarse, 4-part division method can detect
strange performance patterns, although the more fine grained, predictably, is
more detailed (Figure 1f). Contrariwise, Figure 1a shows a rather smooth, if
non-linear, curve. It is tempting to think that that smoothness indicates a rela-
tively predictable performance profile, but as we see in the more fine grained view
(Figure 1b) this is not true. However, this supports (though, obviously, does not
confirm) our hypothesis that ontologies with non-linear growth, whether smooth
or jaggy, are performance heterogeneous. In our corpus, they certainly exhibit
surprising variability.

While we were unable to run this test sufficient enough times to attain statis-
tical significance for all ontologies, the data gathered is already highly suggestive
of reasoner performance behaviour on our test corpus. During the execution of
this experiment we noted a curious phenomenon: While in most ontologies we
managed to achieve convergence on the overall classification time on each run,
in the GO-Ext ontology this did not happen. Surprisingly, the classification time
of GO-Ext with Pellet, under exactly the same experimental conditions, varies
from seconds to hours; more specifically, the range is from 27 seconds to 1 hour
and 14 minutes (Figure 2). A unique case as it may be (in our corpus), it suffices
to illustrate not only the need for performance analysis solutions, but also the
difficulty of the problem in cases such as this one.

5 Performance Hot Spots

We hypothesise that if an ontology is performance heterogeneous for a reasoner,
then there exists at least one “small” subset of that ontology whose removal
results in a “significant” change in the classification time (positive or negative).
That is, when there exists a subsetM of a given ontology O such that (1)M is
“acceptably small” (typically, |M| � |O|), and (2) RT(O\M)� (or �) RT(O).
We call such a subsetM, which witnesses the performance heterogeneity of O, a
“hot spot”, by way of analogy with program profilers. The analogy is imperfect
as we cannot say whether such bits themselves consume an inordinate amount
of time, or whether they have some more diffuse triggering effect.

0	

10	

20	

30	

40	

50	

60	

70	

1	 2	 3	 4	

(a) ChEBI 4-part division (Pellet)

0	

10	

20	

30	

40	

50	

60	

70	

1	 2	 3	 4	 5	 6	 7	 8	

(b) ChEBI 8-part division (Pellet)

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

1	 2	 3	 4	

(c) Gazetteer 4-part division (HermiT)

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

1	 2	 3	 4	 5	 6	 7	 8	

(d) Gazetteer 8-part division (HermiT)

0	

50	

100	

150	

200	

1	 2	 3	 4	

(e) EFO 4-part division (Pellet)

0	

20	

40	

60	

80	

100	

120	

140	

1	 2	 3	 4	 5	 6	 7	 8	

(f) EFO 8-part division (Pellet)

0	

20	

40	

60	

80	

100	

120	

1	 2	 3	 4	

(g) ICF 4-part division (HermiT)

0	

20	

40	

60	

80	

100	

120	

1	 2	 3	 4	 5	 6	 7	 8	

(h) ICF 8-part division (HermiT)

Fig. 1: Performance heterogeneity tests of select ontologies. All times in seconds.

0	
500	

1000	
1500	
2000	
2500	
3000	
3500	
4000	
4500	

0	 10	 20	 30	 40	 50	 60	 70	

(a) Times in chronological order.

0	

1000	

2000	

3000	

4000	

5000	

0	 10	 20	 30	 40	 50	 60	 70	

(b) Times in ascending order.

Fig. 2: Classification times (in seconds) of the GO-Ext ontology with Pellet.

Obviously, the exact nature of the smallness of M relative to O and the
respective classification times depend on non-intrinsic considerations. In general,
we consider subsets below 20% of the ontology and speed-ups of at least an order
of magnitude, and preferably more.

Given that exhaustive search is unpromising, indeed the search space is un-
manageable; for a number of axioms n, variable k, and considering only subsets
of size below 20% of n, the possible subsets are all unique combinations of n
of size k, for 1 6 k 6 0.2n, we need some other method for producing good
“candidate hot spots”, i.e., subsets that are likely to be hot spots. In [23], the
authors suggest that the satisfiability checking (SAT) time of an atomic concept
is an indicator of the total time the reasoner spends on or “around” those atomic
concepts during classification. In particular, they observe that in their examined
ontologies, relatively few concepts (2-10 out of 1000s) took enormously more
time to check their satisfiability than for the rest of the concepts. Since sub-
sumption testing is reduced to satisfiability checking, it is at least prima facie
plausible that the stand alone satisfiability time is correlated with a “hot spot”.
Indeed, the authors were able to “repair” their sample ontologies, by removing
a small number of axioms based on guidance from SAT times.

5.1 Hot Spot Detection

Just knowing the “hard” concepts does not give us a corresponding set of axioms.
For a candidate C, we use the >⊥∗-module of the terms co-occurring with C in
an axiom in O as the module “around” C. This roughly approximates what an
ideal user might do: identify the problem (C) and then “remove it” (i.e., remove

its explicit and implicit presence; the usage gets the explicit while the module
gets the rest; this is an approximation, obviously). We rely on >⊥∗-modules as
these were shown to be the smallest kind of locality-based module [17]. The full
technique is described by Algorithm 1. To test whether our indicator is effective,
we compare it to candidates generated from randomly selected concepts. For
each member of our set of 12 “hard” BioPortal ontologies we attempted to find
3 witness hot spots while testing no more than 1,000 hot spot candidates. In
each case, we selected candidate hot spots using both the SAT-guided and the
randomly selected concept methods.

Algorithm 1 Identification of hot spots in ontologies.

Input: Ontology O
Output: Set of modules S, wherein for each Mi ∈ S: RT(O \Mi)� RT(O)

S ← ∅; Candidates← ∅; T imes← ∅; max = 1000;
for all atomic concepts C ∈ Õ do {S1: Get SAT times}
T imes← T imes ∪ 〈C, SATtime(C)〉

end for
Sort T imes in descending order of SATtime(C)
Candidates← Candidates ∪ {C with highest SATtime up to max concepts}
for all C ∈ Candidates do {S2: Verify candidate hot spots}
M = >⊥*-mod({t | t co-occurs with C in some α ∈ O},O)
if RT(O \M)� RT(O) then {S3: Test hot spot effectiveness}
S ← S ∪M

end if
end for
return S

The first striking result is that we verified all the coarse-grained heterogeneity
predictions. That is, if an ontology had a linear performance growth curve then
neither method found a hot spot, whereas if the growth curve was non-linear
then we found at least 1 hot spot, and usually 3.10

The hot spots found are described in Table 1. Both techniques were able to
find hot spots most of the time, though the random approach failed in two cases.
For the NEMO/HermiT combination, both approaches failed to find 3 before the
limit, which suggests that hot spots are scarce. Contrariwise, for NCIt/HermiT,
while the random approach failed to find any hot spots, the SAT-guided approach
found them in 7 tests. In general, though not always, the SAT-guided approach
found 3 hot spots in far fewer tests than the random approach (on average,
respectively, in 129 vs. 426 tests), validating concept satisfiability as a significant
indicator. Note that, at this point, we only present classification time boosts. The
completeness of classification results is presented in Table 5.

A difficulty of the SAT-guided approach is the time to test all concepts
for satisfiability. For example, we were unable to retrieve precise satisfiability-
checking times for the GO-Ext ontology with FaCT++ and JFact. Instead, we

10 Of course, this could be just that we failed to find the telltale hot spots in the
linear-growth ontologies. However, the overall evidence is highly suggestive.

Ontology
Nr. Nr.

Reasoner RT(O)
Hot Avg. Avg. Nr. Avg. Avg. Avg.

Axioms Concepts Spots RT(O \M) Boost Tests |M| %|O| RT(M)

ChEBI 60,085 28,869 Pellet 65.8
3 12.3 82% 3 186 0.3% 0.55
3 3.5 95% 89 522 1% 0.72

EFO 7,493 4,143 Pellet 61.1
3 9.6 81% 128 68 1% 0.13
3 10.9 82% 863 70 1% 0.14

GO-Ext. 60,293 30,282 Pellet 268.4
3 29.6 89% 36 98 0.2% 0.08
3 31.9 88% 419 17 0.03% 0.06

IMGT 1,112 112
Pellet >54,000

1 26.1 99% 112 98 9% 0.09
1 26.1 99% 112 98 9% 0.09

HermiT 80.4
3 7.8 90% 86 35 3% 8.86
3 7.1 91% 103 36 3% 10.4

NEMO 2,405 1,422 HermiT 76.3
1 5.5 93% 1,000 44 2% 4.63
0 - - 1,000 - - -

OBI 25,257 3,060

HermiT 61.6
3 2.3 96% 3 570 2% 1.56
3 4.3 93% 189 576 2% 1.48

JFact 72.1
3 1.1 93% 3 570 2% 1.12
3 7.4 90% 57 576 2% 1.19

Pellet 119.8
3 11.1 91% 29 708 3% 2.05
3 21.6 82% 133 593 2% 1.76

VO 8,488 3,530 Pellet 4275.9
3 30.4 99% 11 322 4% 1.56
3 371.7 91% 725 262 3% 0.61

NCIt 116,587 83,722 HermiT 430.1
3 16.1 88% 7 3,611 3% 16.14
0 - - 1,000 - - -

Table 1: Comparison of hot spots found via SAT-guided (white rows) and random
(grey rows) concept selection approach. “Nr. Tests” is the number of candidates
tested before either finding 3 hot spots or exhausting the set search space (either
the number of concepts in the ontology or 1000, whichever is smaller). CPU times
in seconds.

used a timeout on each concept satisfiability check of 60 seconds. Also note that,
for this particular ontology, we use (in Table 1 and subsequent ones) the median
time value from the wide range of obtained classification times.

Overall, the hot spot finding mechanism described in Algorithm 1 is feasi-
ble, and successfully identified hot spots in all ontologies deemed performance
heterogenous. The run time of our implementation is lower than the original
classification time in 4 out of 11 cases, including one case (IMGT/Pellet) for
which classification did not terminate within 15 hours. In general, the found
hot spots were quite good: they typically were smaller than our limit (only
IMGT/Pellet was above 5% of the ontology) and often giving massive speedups
(e.g., IMGT/Pellet). There is no indication that hot spots, on their own, are
particularly hard, which suggests an interaction effect, as expected.

5.2 Hot Spot Analysis

In order to investigate whether the removal of each hot spot happened to shift
expensive constructs from the main input to the subset, we verify the expressivity
of the hot spots and the remainder ontology (shown in Table 2).

Notice that, in several cases, the removal of the hot spot does not change the
expressivity of the remainder w.r.t. the whole ontology, e.g. in ChEBI. However

Ontology O O \M M
ChEBI ALE+ ALE+ ALE+

EFO SHOIF SHIF SHOIF
GO-Ext. ALEH+ ALEH+ AL, ALEH+, ALE
IMGT ALCIN ALC, ALCIN ALCI, ALCIN
NEMO SHIQ SHIF SHIQ

OBI SHOIN SHOIN SHOIF , SHOIN
VO SHOIN SHOIN SHOIF

NCIt SH ALCH S
Table 2: Expressivity of each original ontology (O), its various hot spots (M)
and corresponding remainders (O \M).

in other, yet few cases, there is a reduction of expressivity, e.g., the hot spots
found in EFO leave the remainder without nominals. Similarly in NEMO the
remainder no longer has qualified cardinality restrictions.

In order to get a better understanding of why this performance boost oc-
curs, particularly the interaction effect between each hot spot and the ontology,
we verify whether the removal of the hot spots from these ontologies changes
the number of General Concept Inclusions (GCIs),11 as these are an obvious
potential source of hardness. The results gathered are shown in Table 3.

Ontology O O \M1 O \M2 O \M3 M1 M2 M3

EFO 172 163 164 164 9 8 8

GO-Ext 4407 4398 4382 4382 9 25 16

NCIt 42 37 36 36 5 6 6

NEMO 31 30 - - 1 - -

OBI 227 182 193 193 44 33 33

VO 235 196 201 197 39 34 38

IMGT 38 0 0 0 38 38 38

Table 3: Number of GCIs contained in the each ontology, its hot spots, and their
corresponding remainders.

The obvious thing to notice here is that the removal of each of the 3 hot
spots found within IMGT (for HermiT) leaves the remainder with no GCIs at
all. Other cases are not so obvious, indeed in, e.g., NEMO or NCIt, only a few
GCIs are removed from the original ontology. However, there seems to be some
relation between the loss of GCIs from the original ontology into the hot spot, and
the improvement in classification time. We speculate that a glass box approach
to investigating this relation may help disentangle performance difficulties in
specific reasoners, though this is beyond the scope of the paper.

11 Axioms with complex concepts on both sides, e.g., ∃r.A v ∃r.B.

5.3 Comparison with Pellint

As a final check, we compared our technique with Pellint [12]. Pellint is a “perfor-
mance lint” dedicated specifically to the Pellet reasoner; it draws on the knowl-
edge of the Pellet developers to generate a set of rules for what sorts of constructs
and modelling patterns are likely to cause performance degradation when using
Pellet — essentially it is a Pellet specific, ontology performance tuning expert
system. Pellint not only identifies problem constructs, but it suggests approxi-
mations (typically by weakening or rewriting axioms) which “should” improve
performance. If the number of axioms touched by Pellint repairs is sufficiently
small and the gain sufficiently large, then Pellint will have identified a hot spot
(though, at most 1). Since we believe that the “predicted homogeneous” ontolo-
gies have no hot spots (and we did not find any), we would expect that, while
perhaps improving their performance, Pellint would not identify a hot spot. Sim-
ilarly, for non-Pellet reasoners, we would expect no improvements at all. To check
these conjectures we ran Pellint on all our ontologies and compared reasoning
times for all “bad” reasoner/ontology combinations for both the Pellint approx-
imated versions, and by removing the modified axioms (thus providing a direct
comparison with Table 1). The results are shown in Table 4. Note that ontologies
for which Pellint found no lints at all are omitted (5, in total). If Pellint found
lints but could not alter them, then the number of altered axioms will read as 0
and no tests performed.

Ontology Reasoner RT(O)
Nr. Axioms %|O| Altered(O) O \ {lints}

Altered (lints) Altered RT(O) Boost RT(O) Boost

ChEBI Pellet 65.8 0 - - - - -

EFO Pellet 61.1 172 2% 3.7 94% 3.1 95%

GO-Ext. Pellet 268.4 4407 7% 19.4 93% 5.85 98%

VO Pellet 4275.9 231 3% 119.7 97% 3.32 99%

NCIt HermiT 430.1 42 0.04% 443.4 -3% 448.1 -4%

Coriell
Pellet 923.5

46 0.03%
642.3 30% 631.0 32%

FaCT++ 156.1 159.2 -2% 159.1 -2%
JFact 154.8 154.2 0.4% 143.9 7%

PRPPO Pellet 118.9 0 - - - - -

Table 4: Ontologies for which Pellint found “lints”.

First, Pellint was not able to find any hot spots in the predicted homoge-
neous ontologies, though for one (Coriell/Pellet) it was able to provide a signif-
icant performance boost (32%). This further confirms our linear/homogeneous
hypothesis. Second, Pellint found hot spots in 3 out of 8 heterogeneous ontolo-
gies, performing much worse than even random concept selection. When found,
the hot spots where competitive, but not all repaired lints improved performance
(i.e., NCIt/HermiT). Pellint failed to find hot spots in our experiments due to
finding no lints (5 ontologies), having no repairs12 (2 ontologies), or just failing

12 The set of suspect axioms might be a hot spot (or a subset thereof), but without
access to them we cannot test.

to produce a dramatic enough (or any) effect (4 ontology/reasoner pairs, with
most being non-Pellet). As expected, Pellint found no hot spots or performance
improvements for other reasoners. Of course, this might be just be due to its
overall poor hot spot finding.

Finally, Pellint’s alterations had a noticeable negative effect on reasoning time
compared to simple removal. Whether these approximations significantly save en-
tailments needs to be investigated. Given the high development and maintenance
costs of Pellint, it does not seem viable compared to search based methods.

6 Improving Classification via Hot Spots

The applicability of our hot spot finding method is dependent on how much infor-
mation users are willing to lose. In a realistic edit-compile-deploy scenario, users
may be wary to dispose of parts of their ontology. Thus, in order to avoid this
predicament, we explore a series of approximation and knowledge compilation
techniques, and compare them with a known approximate reasoning method.
The latter is based on a reduction of the input into the tractable fragment of
OWL: EL, as implemented in TrOWL [15]. We implemented the EL reduction
algorithm so as to apply it to any given reasoner other than REL (the reasoner
used within TrOWL). Our approximation-based classifier is denoted ELC.

6.1 Approximate Reasoning

First off, given a hot spot and an ontology, we have an immediate approxi-
mation O \ M of O; It is much easier to reason over than the original on-
tology, though possibly too incomplete w.r.t. Cl(O) (i.e., the set of inferred
atomic subsumptions of O). From hereon we derived two more approximations:
1) Cl(O \M) ∪ Cl(M), which would naturally be more complete than O \M
alone, and 2) O \M ∪ Cl(M), where we expect that the interaction between
inferred subsumptions in M and the remainder will bring us closer to Cl(O).
A comparison of these techniques is shown in Table 5, containing the results of
each of the 3 approximations as well as ELC with the respective reasoner.

Overall the closest approximation is O\M∪Cl(M), which yields an average
completeness of 99.84% and an average boost of 89.3% over the original times.
ELC is typically more complete, though in several cases classifying an ontology
with ELC is much slower than the original RT(O), e.g., ELC failed to classify
the NCIt within 5 hours, compared to ≈7 minutes originally. Similarly with
ChEBI and OBI, the approximation is no faster than the original times. Overall
the average boost via ELC is non-existent, particularly due to the NCIt case.
By excluding that one case, ELC’s average classification time boost is of 33.7%.

Applying the original TrOWL system, with its internal reasoner REL, is not
so much better than using standard DL reasoners on the EL approximations,
particularly since some DL reasoners (e.g., Pellet or FaCT++) are finely tuned
to the EL fragment of OWL. Nevertheless, we analysed those results only to find

Ontology Reasoner
O \M Cl(O \M) ∪ Cl(M)O \M∪ Cl(M) ELC

Compl. Boost Compl. Boost Compl. Boost Compl. Boost

ChEBI Pellet 55% 89% 55% 89% 100% 84% 100% -207%

EFO Pellet 78% 86% 79% 86% 100% 81% 100% 63%

NCIt HermiT 75% 90% 80% 87% 100% 89% -12 -2651%

NEMO HermiT 97% 96% 98% 92% 100% 96% 99.94% 93%

OBI
HermiT 51% 96% 55% 94% 100% 94% 100% 14%
JFact 51% 91% 55% 90% 99.92% 84% 99.95% -10%
Pellet 50% 88% 54% 88% 100% 86% 100% 54%

IMGT
Pellet 68% 100% 76% 100% 100% 100% 100% 100%

HermiT 92% 92% 97% 78% 99.92% 92% 100% 100%

VO Pellet 50% 98% 52% 98% 98.36% 94% 100% 97%

GO-Ext Pellet 95% 90% 96% 90% 100% 81% 100% 33%

Average 69.2% 92.4% 72.3% 90.4% 99.84% 89.3% 99.99% -210%

Table 5: Approximate reasoning results for the approximations O \M, Cl(O \
M) ∪ Cl(M), O \ M ∪ Cl(M), and, finally, ELC. The completeness of each
approach w.r.t. Cl(O) is denoted “Compl.”.

that TrOWL has the exact same problem with the NCIt, and out-performs ELC
in 4 out of 7 cases by mere seconds.

6.2 Knowledge Compilation

While the loss of entailments via our best approximation is typically empty, or
very low, we investigate whether a number of knowledge compilation techniques
based on hot spots enjoy the same performance boosts as the approximations in
Section 6.1. These techniques all maintain 100% completeness of knowledge con-
tained in the original ontologies, i.e., they produce logically equivalent knowledge
bases. The rationale behind these techniques is that by adding inferred knowl-
edge (e.g., from a hot spot) to the original ontology, reasoners will not need to
do certain (possibly expensive) subsumption tests, and, as a consequence, should
(at least intuitively) perform faster. The results are shown in Table 6.

First thing to notice here is that adding the inferred class hierarchy of the
parts does not necessarily improve classification time over the whole. There are
cases, such as OBI with JFact, where all compilation techniques took much
longer to classify than the original (note that we timed-out the operation at 5
hours). On the other hand, there are cases where there is mild to noteworthy
improvement, for instance VO classifies 75% faster when we use the second com-
pilation technique, which is a significant improvement with no loss of knowledge.
Similarly the GO-Ext ontology classifies 92% faster with both the second and
third compilation technique. Nevertheless, the results gathered are not nearly
as stable w.r.t. classification time improvement as our approximations, and the
improvements obtained are also not as high as those shown in Section 6.1.

12 The classification of the NCIt was interrupted after running for 5 hours, well above
the original classification time.

Ontology Reasoner
O ∪ Cl(M) O ∪ Cl(O \M) O ∪ Cl(M) ∪ Cl(O \M)
Time Boost Time Boost Time Boost

ChEBI Pellet 74.5 18% 73.1 19% 73.6 19%

EFO Pellet 51.3 30% 63 14% 62.9 14%

NCIt HermiT 616.1 6% 603.2 8% 614.5 6%

NEMO HermiT 94.9 5% 94.6 6% 98.6 2%

OBI
HermiT 71 -3% 69.1 0% 70.7 -2%
JFact >5hrs - >5hrs - >5hrs -
Pellet 264 -66% 207.5 -31% 276.6 -74%

IMGT
Pellet 36000 33% 36000 33% 36000 33%

HermiT 94.8 -4% 94.9 -4% 94.8 -4%

VO Pellet 1704.4 60% 1066.2 75% 2136.2 50%

GO-Ext Pellet 161.4 56% 30.1 92% 30.6 92%

Average Boost - 14% - 21% - 14%

Table 6: Compilation results for the techniques O∪Cl(M), O∪Cl(O \M) and
O ∪ Cl(M) ∪ Cl(O \M).

7 Related Work

In [23], a number of ontology profiling techniques are proposed and realized
in a tool, Tweezers for Pellet. Tweezers allows users to investigate performance
statistics, such as the satisfiability checking time for each concept in the ontology,
but relies on the user to apply this information. Our goal driven technique can
be seen as the automated exploitation of their statistics.

In [4] the author proposes three techniques to automatically identify po-
tentially expensive “constructs” (concepts, roles or axioms). These techniques
search for “suspect” constructs by recursively splitting an ontology in different
manners, and individually testing performance over the parts until suspects are
found. While their actual attempt was rather ad hoc, it does suggest an alterna-
tive discovery mechanism (as they did find some hot spots).

In [3] the authors present a form of OWL reasoner benchmarking based on
justifications. JustBench computes all justifications for entailments in a given
ontology, and measures the performance of reasoners on those justifications. The
authors hoped that they would find justifications that were hot spots themselves
(or indicators thereof), but this hope was not borne out by their experiments.

8 Discussion and Applications

Unlike with hot spots in programs, there is no straightforward relationship be-
tween the performance of a “hot spot” in isolation and the effect it has on the
ontology as a whole (see the last column in Table 1). Our results have shown
that there is no precise co-relation between the classification time of a hot spot
alone, and the reduction in classification time when such hot spot is removed.
This is somewhat similar to the fact that in a program, if an individually quick
function is called sufficiently often, it may be the performance bottleneck for
that program. That is, looking at the performance of the function in isolation is

not sufficient to determine its effect on the overall runtime. However, in our case,
there are many possible and currently unknown ways that a performance hot
spot might affect overall runtime, and yet not exhibit pathological behaviour on
its own. Indeed, the fact that sometimes adding axioms is sufficient to eliminate
performance problems shows that isolating behaviour is not a reliable predictor
of integrated effect. It would be interesting to seek out inverse hot spots, that is,
acceptably small subsets whose removal greatly increases the classification time
of an ontology, though these would have less end user applicability. Of course,
merely finding hot spots does not provide any explanation of performance pat-
terns, it merely provides tools for investigating them. On the other hand, it is a
purely black box technique, thus, unlike Pellint, does not require such insight to
be effective.

Our investigation was partly inspired by our observation of user coping tech-
niques for recalcitrant ontologies, thus it is natural to seek to apply them in such
scenarios. The basic idea is straightforward enough: Present the user with a se-
lection of hot spots and let them select the most appropriate one to “set aside”
(permanently or temporarily) or to rewrite into a less damaging approximation.
Of course, we might want hot spots with somewhat different properties, e.g.,
that the remainder ontology is a module rather than the hot spot, so that “safe
edits” to the remainder will not alter the meaning of the hot spot. We might use
heuristics to select a hot spot for automated removal or approximation. Modular
hot spots might be presented to the user so they can attempt to have a clearer
understanding of “what was removed.”

Our techniques could benefit reasoner developers as well. For example, a hot
spot gives the developer a pair of almost identical ontologies with vastly different
performance behaviour. By comparing the profiling reports on their reasoners
processing these inputs, the developer might gain additional insight.

Currently, we have concentrated on satisfiability-checking time of atomic con-
cepts as the indicator for hot spots. There are clearly alternatives for this, e.g.,
small atoms [6] or justifications, as well as brute force methods [4].

All our experiments, as they stand, can be improved in two dimensions: 1)
more input ontologies are always better, and 2) our sampling, particularly in the
coarse grained method, is very low. Clearly, they were sufficient to reveal some
interesting phenomena, but not to establish statistically significant findings.

Finally, it may be possible to derive Pellint-like rules directly from hot spots
extracted from a large number of ontologies. While requiring maintenance, it
would be inherently much faster than our approaches as it would not require
any reasoning at all.

References

1. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL — A polynomial-time reasoner for
life science ontologies. In: IJCAR-06 (2006)

2. Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in EL+. In: Proc. of
DL 2006 (2006)

3. Bail, S., Parsia, B., Sattler, U.: JustBench: A framework for OWL benchmarking.
In: Proc. of ISWC-10 (2010)

4. Charaniya, S.: Facilitating DL Reasoners Through Ontology Partitioning. Master’s
thesis, Nagpur University, India (2006)

5. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. J. of Artificial Intelligence Research 31 (2008)

6. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of
an ontology: Atomic decomposition. In: Proc. of IJCAI-11 (2011)

7. Horridge, M., Bechhofer, S.: The OWL API: A Java API for working with OWL
2 ontologies. In: Proc. of OWLED-09 (2009)

8. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.
of KR-06 (2006)

9. Horrocks, I.: The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press (2003)

10. Horrocks, I., Patel-Schneider, P.F.: Evaluating optimised decision procedures for
propositional modal k(m) satisfiability. J. of Automated Reasoning 28, 173–204
(2002)

11. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: Proc. of ISWC/ASWC-07 (2007)

12. Lin, H., Sirin, E.: Pellint - a performance lint tool for Pellet. In: Proc. of OWLED-
08EU (2008)

13. Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet, C.,
Rubin, D.L., Storey, M.A., Chute, C.G., Musen, M.A.: Bioportal: Ontologies and
integrated data resources at the click of a mouse. Nucleic Acids Research 37, W170
– W173 (2009)

14. Patel-Schneider, P.F., Sebastiani, R.: A new general method to generate random
modal formulae for testing decision procedures. J. of Artificial Intelligence Research
18, 351–389 (2003)

15. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness Preserving Approximation for TBox Rea-
soning. In: Proc. of AAAI-10 (2010)

16. Rudolph, S., Tserendorj, T., Hitzler, P.: What is approximate reasoning? In: Proc.
of RR-08 (2008)

17. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract? In: Proc. of DL 2009 (2009)

18. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artificial Intelli-
gence 74, 249–310 (1995)

19. Shearer, R., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In:
Proc. of OWLED-08EU (2008)

20. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. of Web Semantics 5(2) (2007)

21. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Proc. of IJCAR-06 (2006)

22. W3C OWL Working Group: OWL 2 Web Ontology Language: Document overview.
W3C Recommendation (27 Oct 2009), http://www.w3.org/TR/owl2-syntax/

23. Wang, T.D., Parsia, B.: Ontology performance profiling and model examination:
First steps. In: Proc. of ISWC/ASWC-07 (2007)

