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Abstract. A key issue in semantic reasoning is the computational com-
plexity of inference tasks on expressive ontology languages such as OWL
DL and OWL 2 DL. Theoretical works have established worst-case com-
plexity results for reasoning tasks for these languages. However, hardness
of reasoning about individual ontologies has not been adequately char-
acterised. In this paper, we conduct a systematic study to tackle this
problem using machine learning techniques, covering over 350 real-world
ontologies and four state-of-the-art, widely-used OWL 2 reasoners. Our
main contributions are two-fold. Firstly, we learn various classifiers that
accurately predict classification time for an ontology based on its metric
values. Secondly, we identify a number of metrics that can be used to
effectively predict reasoning performance. Our prediction models have
been shown to be highly effective, achieving an accuracy of over 80%.

1 Introduction

Ontologies are essential building blocks of the Semantic Web. However, the high
expressivity of ontology languages also incurs high computational complexity.
For example, it has been shown that SHOIN (D), the description logic (DL)
underlying OWL DL, is of worst-case NExpTime-complete complexity [10].
The complexity of SROIQ(D), the DL underlying OWL 2 DL, is even higher
(2NexpTime-complete) [7].

The past decade has seen the development of highly optimized inference al-
gorithms for description logics, with tableau algorithms [2] being a leading exem-
plar. A number of high-performance tableaux-based reasoners have been devel-
oped, including FaCT++ [19], HermiT [15], Pellet [16] and TrOWL [18]. Despite
the tremendous progress in ontology reasoning, the high theoretical worst-case
complexity results for OWL DL and OWL 2 DL still implies that core reasoning
services may be computationally very expensive. For example, it is shown in [4]
that although the simpler OWL 2 EL profile has polynomial-time inference al-
gorithms [1], reasoning about large ontologies in OWL 2 EL (Gene Ontology,
NCI Thesaurus and SNOMED CT) still requires considerable amounts of time
and computational resources.

Moreover, worst-case complexity does not necessarily indicate real-world per-
formance on individual ontologies. In this context, it is noteworthy that reasoner
benchmarking has been conducted previously [12,6,4]. However, these works only



compared inference performance on a small set of ontologies. They did not at-
tempt to correlate characteristics of ontologies with their inference performance.
Hence, they do not provide insight into what makes inference difficult on a given
ontology.

Metrics have been used widely and successfully to model artefact complexity
in combinatorics and software engineering. We believe that they can be similarly
applied to the problem of modelling of ontology inference performance, using a
set of ontology metrics like those defined in [24] as a basis. In this paper, we
tackle the challenge of predicting ontology classification performance by applying
machine learning techniques.

Specifically, we conduct a comprehensive and rigorous investigation, using
more than 350 real-world ontologies and 4 widely-used OWL 2 DL reasoners
(FaCT++, HermiT, Pellet and TrOWL).1 Multiple classifiers and feature se-
lection algorithms are tested for their effectiveness. Moreover, 27 metrics are
studied for their suitableness for performance prediction. To the best of our
knowledge, to date this is the most comprehensive study on characterizing on-
tology inference performance, and it is the first study on predicting ontology
inference performance.

The main contributions of this paper can be summarized as follows:

Prediction model We learn a random forest-based classifier that is consis-
tently accurate in predicting ontology classification time using metrics. The
accuracy of the classifier is over 90% for HermiT and TrOWL, and over 80%
for FaCT++ and Pellet.

Key metrics A set of 8 ontology metrics are identified according to their ef-
fectiveness in predicting classification performance. These metrics can provide
additional insights into ontology engineering and maintenance.

2 Background and Related Work

Works mostly closely related to ours are the ones that compare the performance
of OWL reasoners. Benchmarking of description logics (hence ontology) reason-
ers is not a new topic. However, with the rapid advances made in reasoning
algorithms and reasoners, there is sustained interest and need for repeated and
rigorous evaluation. Early works [8,9] mainly used synthetic TBoxes for evaluat-
ing system performance on less expressive languages (ALC and its predecessors).
In [17], Tempich and Volz developed a systematic method of generating synthetic
ontologies. They also performed k-means clustering on 95 medium-sized ontolo-
gies (65 class expressions and 25 properties on average) and obtained 3 clusters
of ontologies, using a number of different language constructs as features. Wang
and Parsia [20] developed Tweezers, a profiler for Pellet, that is capable of col-
lecting inference results and performance statistics. The authors demonstrated
how such data can be used to modify an ontolgy to speed up reasoning.

1 Note that TrOWL is a reasoning infrastructure that is capable of performing incom-
plete reasoning for OWL 2 DL through approximation [13]. The degree of complete-
ness is not the focus of this paper and hence is not tested.



In [3], 4 ontologies, each from a language with a different expressivity (RDFS(DL),
OWL Lite, OWL DLP and OWL DL) were chosen to compare a number of OWL
reasoners. Both TBox and ABox reasoning tasks were compared for a number
of reasoners and reason-able triple stores such as Sesame. Reasoner benchmark-
ing has been done using either synthetic or real-world ontologies [12,6]. More
recently, 8 modern reasoners are compared on 3 large OWL 2 EL ontologies
(Gene Ontology, NCI Thesaurus and SNOMED CT) [4]. Various dimensions of
the OWL reasoners were discussed with a focus on performance. The authors
drew the conclusion that there is significant performance variability among rea-
soners and it should be further investigated. This work partially motivated our
investigation in this paper.

In the SEALS project,2 the Storage and Reasoning Systems Evaluation Cam-
paign 2010 aimed at the evaluation of DL-based reasoners. In the evaluation, the
performance of three reasoners: FaCT++, HermiT, and jcel were measured and
compared in terms of a suite of standard inference services such as classification,
class/ontology satisfiability, and logical entailment. Although the evaluation pro-
duces a good performance comparison summary of the different reasoners, it does
not seem to identify what impact ontology characteristics have on the perfor-
mance of these reasoners.

There has been research on the development of a series of metrics for analyz-
ing ontology complexity. For example, some metrics have been proposed [22,23]
for analyzing ontology complexity by examining the quantity, ratio, and correla-
tivity of classes and relations in a given ontology. However, the metrics developed
in this work focused on characteristics of classes without considering a broader
range of ontology characteristics. Also, these metrics were mainly designed to
analyze complexity evolution and distribution of ontologies, but not for predict-
ing the reasoning performance of ontologies. The work [5] defined some metrics
to analyze structural complexity of a given ontology. However, it focused only on
analyzing coupling between classes as a measure of ontology complexity. Thus,
it does not provide any evidence of how the metrics can be used in analyzing
reasoning performance of ontologies.

In [24] we proposed a suite of metrics with the aim of characterizing different
aspects of ontology design complexity. These metrics consider a broader range
of ontology characteristics, and hence are more suitable for the task of perfor-
mance prediction. All the metrics can be calculated automatically and efficiently,
allowing us to leverage them for predicting reasoning performance.

3 Ontology Metrics

In [24] a total of 8 ontology metrics were defined with the aim of measuring
different aspects of the design complexity of OWL ontologies. These metrics are
defined on a graph representation of an ontology and are used in this paper as
a set of features for predicting reasoner performance. They can be divided into
two categories: ontology-level metrics (ONT) and class-level metrics (CLS). In

2 http://www.seals-project.eu



addition to these 8 metrics, we have defined some other metrics that measure
different aspects of an ontology’s size and structural characteristics. The metrics
are defined on the asserted logical axioms in an ontology and they can be divided
into two more categories: anonymous class expressions (ACE) and properties
(PRO). For each ontology, we record the sum of each of the CLS, ACE and
PRO metrics. Hence there are 27 distinct metrics in total.

Note that syntactic sugar axioms such as EquivalenceClasses, Disjoint
Classes and PropertyChain are transformed into pair-wise axioms with a quadratic
increase in the number of axioms.

– Ontology-level Metrics (ONT). The ONT metrics measure the overall char-
acteristics of a given ontology. Besides the 4 metrics defined previously in [24],
including SOV (size of vocabulary), ENR (edge-node ratio), TIP (tree im-
purity) and EOG (entropy of graph), we define 2 new ONT metrics:

• CY C (Cyclomatic complexity). CY C is defined as CY C = #E−#N+2∗cc,
where cc is the number of strongly connected components of the ontology
represented as a graph. CY C measures the number of linearly independent
paths in the ontology graph.

• RCH (Expression richness). RCH measures the ratio between the number
of anonymous class expressions and the total number of class expressions
(including named classes).

– Class-level Metrics (CLS). Classes are first-class citizens in OWL ontolo-
gies, hence we use the 4 CLS metrics defined in [24] to capture characteristics
of classes in an ontology. These metrics are NOC (number of children), DIT
(depth of inheritance), CID (class in-degree), and COD (class out-degree).

– Anonymous Class Expressions (ACE). ACE are an important ingredi-
ent in building up expressive classes. The ACE metrics records, for each kind
of anonymous class expression, the number of occurrences in an ontology.
There are altogether 9 metrics: enumeration (ENUM), negation (NEG),
conjunction (CONJ), disjunction (DISJ), universal/existential quantifica-
tion (UF/EF ) and min/max/exact cardinality (MNCAR/MXCAR/CAR).

– Properties (PRO). Similarly, property declarations and axioms may impact
reasoning performance. The 8 PRO metrics record the number of occurrences
of each type of property declaration/axiom: object/datatype property declara-
tion (OBP/DTP ), functional (FUN), symmetric (SYM), transitive (TRN),
inverse functional (IFUN), property equivalence (EQV ) and inverse (INV ).

Note that although there is no metric specifically for ontology expressivity
(EL, QL, etc.), such information is implicitly captured by the ACE and PRO
metrics as 0 for a metric indicates the absence of a particular language construct.

4 Investigation Methodology

The principal aims of this paper are two-fold: (1) identifying predictive models
that accurately estimate reasoning performance of unknown ontologies, and (2)
experimentally discovering significant metrics that influence reasoning perfor-
mance. The key steps in our investigation can be summarized as follows:



Scoping. There are a number of main reasoning tasks on ontologies, including
classification and consistency checking, which are equivalent to each other [2].
We found that classification takes significantly longer than consistency checking,
and that there is a significant discrepancy between consistency checking time
reported by the reasoners. Thus, we focus on the more difficult reasoning task,
classification, and aim to provide insight into prediction models and key metrics
embedded in the models. We perform classification on a number of ontologies
using different publicly available reasoners. As stated previously, our analysis is
conducted on 4 actively-maintained, open-source and widely-used OWL 2 DL
reasoners: FaCT++, HermiT, Pellet and TrOWL.

Data Collection. We collect a number of ontologies with varying character-
istics, including the application domain, file size, underlying ontology language,
etc. We compute, for each ontology in the collection, (1) its metric values as
presented in Section 3, and (2) an average performance time for the reasoning
task of ontology classification for each of the 4 reasoners.

Furthermore, since our goal is to learn classifiers, the continuous reasoning
time values need to be discretized in order to assign (i.e. classify) ontologies into
separate groups (i.e. class labels) based on their reasoning time.

Feature Selection. We hypothesize that different metrics may have differ-
ent effects on ontology classification performance. Feature selection is a very
widely-used techniques in data pre-processing to remove irrelevant features. A
number of feature selection algorithms are applied to identify and quantitatively
study the ontology metrics that have a strong impact on performance. These
algorithms typically fall into two categories. Feature ranking algorithms (fea-
ture selectors) rank the features by a metric and eliminate all features that do
not achieve an adequate threshold. Subset selection algorithms search the set
of possible features for the optimal subset. In this work, we consider 6 different
feature selectors, since we are interested in ranking individual features (metrics)
and then finding relevant features based on their ranks. These are the infor-
mation gain (InfoGain), information gain ratio (GainInfo), support vector ma-
chine based weighting (SVM), ReliefF-based (ReliefF), symmetrical uncertainty
(Symm), and chi-squared statistic (ChiSquared) feature selectors.

Predictive Model Development. In this work, we develop predictive models
using classification techniques (in the machine learning sense) to predict reason-
ing performance of the classification task (in the ontology reasoning sense). In
our evaluation, the categories of ontologies are obtained from discretization of
the reasoning time of the ontologies for the task, as stated above. Each ontology
is represented as a pair consisting of a subset of metrics and the corresponding
category. The subset of metrics is found using the feature selectors described
above. Given a dataset consisting of a set of ontologies, we choose the training
and test data based on standard 10-fold cross validation, in which each dataset
is divided into 10 subsets. Of the 10 subsets, 1 subset is retained as testing data,
and the remaining 9 subsets are used as training data. The validation process is
then repeated 10 folds (times).



It is well-known that different classifiers tend to produce different prediction
performance. Hence, we employ various classifiers and identify the most effective
one to build a predictive model for a given dataset. The effectiveness of each
classifier is determined through its classification accuracy (simply accuracy),
often considered to be the best performance indicator for evaluating classifiers.3

It measures the proportion of correctly classified ontologies against all ontologies
in the testing data.

We implement 9 representative classifiers that are available in Weka [21],
with the aim of finding the best predictive models for the four reasoners. These
are classified into 5 categories: Bayesian classifiers (BayesNet (BN) and Näıve-
Bayes (NB)), decision tree-based classifiers (J48, RandomForest (RF), REP Tree
(RT)), rule-based classifiers (DecisionTable (DT)), a regression-based classifier
(SimpleLogistic (SL)), and lazy classifiers (IBk[1≤k≤10] and K*).

Key Metrics Determination. Identifying the metrics that most highly im-
pact reasoning time can provide insights for ontology engineering. In this step,
such metrics are identified by further analyzing outcomes of the feature selectors
utilized in the previous step. More specifically, by examining the metrics used
in the classifier chosen in the predictive model for each dataset, we can identify
which metrics, in conjunction with the classifier, contribute most to accuracy.

Given a dataset of metrics for each reasoner, we apply the 9 classifiers on
various subsets of metrics that are identified by the 6 feature selectors. Then,
we identify the best predictive model for the reasoner consisting of the following
three dimensions: (1) a particular classifier leading to the best accuracy, (2) a
particular metric subset, used for the classifier, and a specific feature selector
that has found the subset, and (3) the prediction performance (accuracy) result
achieved by the classifier with the metric subset. The discovered metric subset
for each reasoner is designated as key metrics leading to its best predictive
model. Furthermore, we measure the impact of individual metrics with respect to
constructing predictive models for the 4 reasoners based on statistical analysis.

5 Data Collection

A total of 358 real-world, public-domain ontologies are collected for this work.
No preprocessing (cleansing) is done. A large number of these ontologies are
collected from the Tones Ontology Repository and NCBO BioPortal.4 These on-
tologies vary in file size, ranging from less than 4KB to almost 300MB. However,
it is worth noting that file size is not a very good indicator of reasoning perfor-
mance, as a small ontology (such as the DOLCE ontology) may owl:imports

a large number of other ontologies, which make up the potentially very large
import closure that a reasoner considers. Note that all ontologies collected from
BioPortal are large, with at least 10,000 terms. The expressivity of these on-
tologies ranges from OWL 2 EL and QL to OWL Full. At the same time, this

3 F-measure is measured and found to be completely positively correlated to accuracy.
For brevity reasons, we only report our experimental results in accuracy.

4 http://owl.cs.manchester.ac.uk/repository/, http://www.bioontology.org/



collection also includes some well-known hard ontologies such as FMA, DOLCE,
Galen, NCI Thesaurus and the Cell Cycle Ontology (CCO).

The values of all metrics are calculated; and the distribution of 8 represen-
tative metrics are shown in Figure 1, where the metric values are plotted in log
scale and ranked by the values. As can be seen quite clearly, the values for these
metrics span a large range, from 0 to more than 105, and to more than 107 for
DIT . Moreover, as expected, the majority of ontologies have metric values in
the middle of the range, with a few having values closer to the boundary.

Classification time for all ontologies is also collected. All the experiments
are performed on a high-performance server running OS Linux 2.6.18 and Java
1.6 on an Intel (R) Xeon X7560 CPU at 2.27GHz with a maximum of 40GB
allocated to the 4 reasoner.5 OWLAPI version 3.2.4 is used to load ontologies
and interface with the reasoners. The reasoners that are invoked are: FaCT++
1.5.3, HermiT 1.3.5, Pellet 2.3.0 and TrOWL 0.8. REL is the underlying reasoner
used by TrOWL. These metrics will be revisited in Section 7.
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Fig. 1. Distributions of values of 8 metrics.

For each ontology and each reasoner, CPU time for classification is averaged
over 10 independent runs and recorded. Loading and pairwise subsumption test
time is are not included. Trivially simple ontologies (with reasoning time≤ 0.01s)
are later excluded from the experiment to reduce the skewness of the dataset.
Some hard ontologies take an extremely long time to classify. Hence, we apply a
50,000-second cutoff for all the reasoners. The distribution of the raw reasoning
time for the four reasoners can be found in Figure 2, where classification time
(in log scale) is ordered and plotted against the ontologies. It can be observed

5 To accommodate large ontologies and potential memory leaks in reasoners (due to
repeated invocations).



that FaCT++, HermiT and Pellet all have some ontologies reaching the cut-off
time, while TrOWL successfully classifies all ontologies.6 It can also be seen that
for relatively easy ontologies (≤ 10s), FaCT++ and TrOWL seem to dominate
the other 2 reasoners. Compared to performance data reported in [4], the per-
formance on the same ontologies (GO and NCI Thesaurus) seems to be much
worse in our experiments, running the same reasoners. Upon closer inspection
we notice that the versions of the “same” ontologies are different – we are using
more recent versions (current as of November 2011) of these ontologies, which
are much larger than those versions used in [4].
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Fig. 2. Raw classification time of the four reasoners.

As stated in the previous section, discretization is a necessary first step be-
fore classifiers can be trained. After raw run time values are collected, they are
discretized into 5 bins, where the bin ‘T’ contains the trivially simple ontologies
(classification time ≤ 0.01s). The other 4 bins are of unit interval width. The
interval width is used as the exponent of the reasoning time, i.e., 10i is the cutoff
point between bin i and bin i + 1, 1 ≤ i ≤ 4. These 4 bins are labelled ‘A’, ‘B’,
‘C’ and ‘D’. A summary of the discretization and the number of ontologies for
each reasoner in each bin is shown in Table 1. It can be seen in the table that
each reasoner fails to perform classification on a number of ontologies due to
parsing or processing errors or the ontology being inconsistent.

Table 1. Discretization of reasoning time and number of ontologies in each bin.

Discretized label Classification time Fact++ HermiT Pellet TrOWL

T T ≤ 0.01s 161 77 138 188

A 0.01s < A ≤ 1s 75 154 126 105

B 1s < B ≤10s 16 35 38 17

C 10s < C ≤ 100s 6 12 12 13

D 100s < D 11 13 16 14

Total discretized 269 291 330 337

Ontologies in error 89 67 28 21
6 We note again that this may be due to TrOWL’s incomplete reasoning approach.



It is worth pointing out that the server where the experiments are performed
is very capable. Although 100 seconds is not a very long time, the same ontology
will take much longer to run on a less powerful computer (mobile devices in
particular).

More analysis of the performance characteristics of the reasoners can be found
in [11]. All the ontologies, their metric values and reasoning time can be found
at http://www.csse.monash.edu/~yli/metrics_perf/.

6 Predictive Models

In this section, we present the first contribution of our work, the construction and
analysis of predictive models for classification performance. Our analysis shows
that consistently high accuracy (> 80%) is achieved for all of the 4 reasoners.

Using 9 classifiers and 6 feature selectors, we learn predictive models as spec-
ified in Section 4. For each classifier, the 6 feature selectors are applied to find
the best set of metrics. The set of metrics leading to the best accuracy for the
classifier and the feature selector is then recorded. The accuracy values of the
9 classifiers are measured. More specifically, an accuracy value is measured for
each classifier with 6 different collections of best metrics identified by each of the
6 feature selectors. Eventually, a single set of the best metrics for each (classifier,
feature selector) pair is collected.

Section 6.1 presents and analyzes the overall accuracy results of the 4 rea-
soners. Section 6.2 further characterizes the best predictive model and discusses
the effect of feature selection.

6.1 Accuracy Distribution and Analysis

For the 4 reasoners, the accuracy distributions of the 9 classifiers (across the
6 feature selectors) are measured and presented in boxplots in Figure 3. Box-
plots provide an excellent visual summary of a distribution through 5 statistical
measures: minimum data value (MIN), lower quartile (Q1), median (Q2), upper
quartile (Q3), maximum data value (MAX). Further, we enhance the boxplots
by additionally showing the mean (AVG) of the accuracy data measured for a
single classifier across the 6 feature selectors.

A box itself contains the middle 50% of the accuracy data measured by a
classifier with the 6 feature selectors; the upper box area (in blue) denotes the
50th−75th percentile (Q2−Q3) of the data, and the lower box area (in yellow)
denotes the 25th−50th percentile (Q1−Q2). The remaining 50% of the data is
contained within the areas between the box and the vertical lines or “whiskers”.
The ends of the whiskers indicate the minimum and maximum accuracy values.
The line inside the box indicates the median value of the accuracy data. The
mean of the accuracy is represented by a red circle in the box. Among the above
6 statistical measures, the values of 2 measures, maximum (MAX) and mean
(AVG) accuracy, are shown in the plot.

A number of important observations can be made from Figure 3.
– RF (RandomForest) is the most stable predictive model. For all the 4 reason-

ers’ performance, RF has the smallest difference of 1.42 between MIN and
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Fig. 3. Boxplots displaying the accuracy distribution for the 4 reasoners.

MAX, while BN has the largest of 4.57. This indicates that RF leads to the
most reliable and stable accuracy results, while BN leads to the most variable
accuracy results.

– Ontology metrics entail good predictive models. The range of the MAX accu-
racy for the 4 reasoners is from 84.26 (by BN for FaCT++) to 91.28 (by RF
for TrOWL). This indicates that particular subsets of ontology metrics, identi-
fied by different feature selectors, can be effectively leveraged for building good
predictive models for classification reasoning performance of the reasoners.

– RF is the best classifier leading to the best predictive models for the 4 reasoners.
We examine which classifiers lead to the best predictive models for the 4
reasoners through statistical analysis of central tendency (e.g. mean) of the
measured quantitative values. We compute the mean of the 6 quantitative
values shown in Figure 3 across the 4 reasoners. The results are presented in
Table 2. The best result in the mean values for each criterion is denoted in
boldface. Table 2 clearly shows that RF leads to the best predictive models
for all the 4 reasoners for all the 6 measures. In the following section, we
describe these models in more detail.

6.2 Best Predictive Models

As each reasoner employs a different set of algorithms and optimization tech-
niques, they may exhibit significantly different performance on the same on-
tology. As a result, the performance of classifiers may be different for the 4



Table 2. The mean quantitative values of the 9 classifiers across the 4 reasoners.

Classifier
6 Statistical Measures

MIN Q1 Q2 AVG Q3 MAX

BN 81.38 82.89 83.41 83.94 84.74 82.30
NB 79.85 79.94 80.23 80.79 82.68 80.66
SL 82.98 83.54 84.12 84.17 85.11 83.47
IBk 82.54 82.88 83.11 83.51 85.00 82.09
K* 82.31 83.70 84.16 84.72 86.15 82.83
DT 82.50 83.04 83.19 83.51 84.40 82.78
RT 81.27 82.40 82.91 83.43 83.80 80.75
RF 85.85 85.97 86.41 86.68 87.30 86.03
J48 82.09 82.90 83.34 83.53 84.63 82.66

reasoners as well. In this subsection, we further analyze the best classifiers and
feature selectors to understand the reasoner-specific behaviours.

As discussed in the previous subsection, RandomForest (RF) is the overall
best classifier. This may in part be due to the nature of RF – that it is an
ensemble classifier that consists of many decision trees. Figure 4 shows, for RF
and each reasoner, the MAX classification accuracy (%) for each feature selector,
and also their average. The numeric label on top of each bar denotes the number
of metrics identified by the corresponding feature selector.
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Fig. 4. Best predictive models for the 4 reasoners.

RF achieves consistently high accuracy, all higher than 80% for each reasoner
with an overall average of 86.03%. For TrOWL, RF achieves 90.38% accuracy on
average. It suggests that RF can be effectively used in predicting classification
reasoning performance. It also reinforces our belief that ontology metrics can be
effective in learning predictive models for the reasoning performance. Moreover,
it also opens up the potential to apply our approach to predicting reasoning
performance of other reasoners.

It can be observed that each best accuracy result comes with a different
number of ontology metrics. The numbers vary from 4 (ReliefF for Pellet) to
25 (ChiSquared for FaCT++). Note that not once is the entire set of 27 met-



rics chosen by any feature selector. This finding establishes the validity of our
hypothesis, presented in Section 4, that feature selectors can be leveraged to
discover more significant metrics that impact on building more strong predictive
models for classification reasoning performance.

7 Key Metrics Identification
In this section, we present the second main contribution of this work, the iden-
tification of important metrics that have a strong impact on classification per-
formance. Such knowledge can contribute the task of ontology engineering and
maintenance. This identification is achieved through a rigorous quantification of
impact factors of all 27 ontology metrics used in the classifiers constructed in
the previous section.

As discussed in the previous section (Table 2), all of the 9 classifiers achieve
mean accuracy of at least 80% for all the 4 reasoners. Such high accuracy makes
the case for investigating the metrics used by all the classifiers and feature selec-
tors. Two factors influence the significance of a given metric: (1) how frequently
it gets selected to be used in the classifiers, and (2) how much it contributes to
prediction of reasoning performance. In other words, the more frequently a met-
ric is used in the predictive models (as chosen by the feature selectors), and the
more weight it has in the classifiers that use it, the more it influences ontology
classification performance. Hence, we combine these two factors to calculate the
impact factor of all the metrics.

Let metrics be denoted mi, 1 ≤ i ≤ 27, classifiers be denoted by cj , 1 ≤ j ≤ 9,
feature selectors be denoted fk, 1 ≤ k ≤ 6, and reasoners be denoted rl, 1 ≤ l ≤ 4.
We denote with fsj,k,l the set of metrics selected for each classifier cj by feature
selector fk for reasoner rl. We further denote with #fsj,l|i the total number of
occurrences of metric mi in all metric sets identified by the feature selectors for
classifier cj and reasoner rl (0 ≤ #fsj,l|i ≤ 6).

Similarly, let rj,li,k denote the weight of the metric mi assigned by feature

selector fk for the pair (cj , rl) (rj,li,k = 0 if mi is not selected), normalized by

max(rj,l∗,k) so that it is between [0, 1]. We average over all the feature selectors

to obtain the average ranked weight rli,j =
∑6

k=1 rj,li,k

6 of mi.
Algorithm 1 describes the calculation of the impact factor for all the metrics.
For each reasoner (lines 1-8), the combined scores taking into account number

of occurrences and weight for each metric are calculated. On line 3, we calculate
the total number of occurrences of each metric for each classifier in a 27×9 matrix
mftl (metric frequency table). For example, if a metric ‘SOV’ (denoted m2) is
in the sets of metrics selected by 4 out of the 6 feature selectors for the classifier
RF (denoted c1) and reasoner Pellet (denoted r3), then mft32,1 = 4. Each mftli,j
value is then normalized by dividing by the total number of occurrences of all
metrics for classifier cj on line 4.

From the raw weight r(i, j, k, l), we obtain the weight rli,j by averaging over
all the 6 feature selectors on line 5. Line 6 then combines the frequency and the
averaged weight of each metric by taking the entrywise product of matrices mf l

and rl.



Input: Metric number of occurrences f(i, j, k, l)
Input: Metric weight r(i, j, k, l)
Output: Impact factor for each metric mif i, 1 ≤ i ≤ 27

1 foreach reasoner rl do

2 Initialize 27× 9 matrices mftl,mf l, rl, nmf l

3 mftli,j ← #fsj,l|i /* Metric frequency per classifier */

4 mf l
i,j ←

mftli,j∑27
i=1 mftli,j

/* Normalization */

5 rli,j ←
∑6

k=1 r
j,l
i,k

6
/* Average ranked weight */

6 mf l ← mf l ◦ rl /* Combining frequency with weight */

7 nmf l
i,j ← a + (1− a)×

mf l
i,j

max(mf l
∗,j)

/* Max frequency normalization */

8 end
9 Initialize 27× 9 matrix nmf for each (mi, cj), 27× 1 vector mif for each mi

10 nmf←
∑4

l=1 nmf l

4
/* Average over the reasoners */

11 mif i ←
∑9

j=1 nmfi,j

9
/* Average over the classifiers */

12 mif i ←
mif i

max(mif)
/* Normalization over max */

13 return mif

Algorithm 1: The calculation of the impact factor of metrics.

Note that one problem of the measure mf l as calculated on line 6 is that the
difference of impact factors between higher and lower frequency metrics tend to
be too large. For example, it seems unlikely that 6 occurrences of a metric with
a ranked scored rl in the collection of a classifier in mftl truly carry 6 times the
significance of a single occurrence with the same or similar ranked score rl. To
avoid this problem, we apply a normalization technique similar to maximum term
frequency normalization [14] to mf l on line 7 to obtain the normalized impact
factor values for each (metric, classifier) pair for each reasoner. Parameter a is
a value between 0 and 1 and is generally set to 0.4 [14]. It is a smoothing term

whose role is to dampen the contribution of
mf l

i,j

max(mf l
∗,j)

. In this step we also scale

down mf l
i,j by the largest frequency values of all metrics in the collection for a

classifier cj .
Eventually, the impact factor values are averaged over all 4 reasoners and all

9 classifiers to obtain the final impact factor values of the metrics (lines 10-11).
The metrics can be grouped into a number of categories according to the

quartiles their mif values fall into: Strong Impact (SI, 0.75 < mif ≤ 1), Normal
Impact (NI, 0.5 < mif ≤ 0.75), Weak Impact (WI, 0.25 < mif ≤ 0.5), and Very
Weak Impact (VI, 0 ≤ mif ≤ 0.25). The ranking and categorization results are
shown in Figure 5.
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Fig. 5. Normalized impact factors of all the ontology metrics.

The 11 metrics in SI, NI and WI are all commonly used in the best predictive
models presented in Figure 4. Except in one case, all metric sets selected by
feature selectors for RF (in Figure 4) are a superset of the 11 metrics in SI, NI
and WI in Figure 5. The exception is the set of metrics selected by ReliefF for
TrOWL, where there are only 4 metrics. In this case, however, the 4 metrics also
belong to these 3 categories. It can be concluded that these 11 metrics form a core
group of metrics that are important for predicting classification performance.

Furthermore, it can be observed in Figure 5 that a group of 8 metrics (SI
and NI) have high impact on reasoning performance, and that there is a clear
separation of mif scores between these two groups of metrics and the rest of
the metrics. Specifically, it can be clearly seen that (1) the number of existential
quantification restrictions (EF ), (2) the size of an ontology (SOV ), (3) the
number of independent paths (CY C), (4) the characteristics of named classes
(the 4 CLS metrics) and (5) the non-treelike-ness of the inheritance graph (TIP )
have a strong impact on prediction performance.

As mentioned previously, the impact factor indicates a metric’s relative influ-
ence on (the prediction of) classification performance. The 8 metrics identified
above can hence be used to guide ontology engineering. For example, reducing the
size of the ontology (SOV ), reducing the number of independent paths (CY C),
reducing the degree of classes (CID and COD) and making the inheritance
graph more tree-like (TIP ) may significantly improve reasoning performance of
the ontology.

8 Conclusion
Terminological reasoning has been shown to be a computationally expensive
problem, especially for expressive languages such as OWL DL and OWL 2 DL.
Despite tremendous progress in the past decade in the design and development
of highly optimized algorithms and reasoners, ontology classification is still a
very challenging task, as demonstrated by previous benchmarking works and
our own experiments. It is therefore highly desirable to be able to quantitatively
analyze and predict reasoning performance using syntactic features.

Metrics have been successfully used to capture different aspects of the syn-
tactic/structural characteristics of various kinds of artefacts (software, combina-



torial problems, etc.), including their complexity and empirical hardness. In this
paper we propose, develop and evaluate the use of ontology metrics as an effec-
tive basis for predict reasoning time for the task of ontology classification. To
the best of our knowledge, this is the first such study to apply machine learning
techniques (classification) to predict reasoning time for ontologies.

Our contributions in this paper are three-fold: (1) the development of highly
effective (over 80% accuracy) predictive models to estimate the reasoning time
for an ontology given its metric values, for four widely-used OWL 2 DL reasoners,
(2) the identification of a set of 8 metrics that have the most impact/correlation
with reasoning performance, and (3) a rigorous empirical validation of the pro-
posed methodology with a set of over 350 real-world ontologies, the largest study
so far in terms of the size of the dataset.

A number of future directions are planned for this work. We will further
study the statistical significance of our predictive models and key metrics. Other
metrics, such as language profile and number of (hidden) GCIs, will be investi-
gated to evaluate their effectiveness in reasoning time prediction. The effect of
optimisation techniques on reasoning performance will also be investigated. We
also plan to investigate other reasoning tasks (consistency checking) and other
machine learning techniques (regression analysis). The degree of incompleteness
of TrOWL will also be studied to quantify its impact on prediction accuracy.
Lastly, we will study the feasibility of generating synthetic ontologies with spec-
ified reasoning performance with metric values as parameters. Such ontologies
will be very valuable in the analysis and optimization of reasoning algorithms.
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