
DeFacto - Deep Fact Validation?

Jens Lehmann, Daniel Gerber, Mohamed Morsey, and Axel-Cyrille Ngonga
Ngomo

Universität Leipzig, Institut für Informatik, AKSW,
Postfach 100920, D-04009 Leipzig, Germany,

{lehmann|dgerber|morsey|ngonga}@informatik.uni-leipzig.de
http://aksw.org

Abstract. One of the main tasks when creating and maintaining knowl-
edge bases is to validate facts and provide sources for them in order to
ensure correctness and traceability of the provided knowledge. So far, this
task is often addressed by human curators in a three-step process: issuing
appropriate keyword queries for the statement to check using standard
search engines, retrieving potentially relevant documents and screening
those documents for relevant content. The drawbacks of this process are
manifold. Most importantly, it is very time-consuming as the experts
have to carry out several search processes and must often read several
documents. In this article, we present DeFacto (Deep Fact Validation) –
an algorithm for validating facts by finding trustworthy sources for it on
the Web. DeFacto aims to provide an effective way of validating facts by
supplying the user with relevant excerpts of webpages as well as useful
additional information including a score for the confidence DeFacto has
in the correctness of the input fact.

1 Introduction

The past decades have been marked by a change from an industrial society to
an information and knowledge society. This change is particularly due to the
uptake of the World Wide Web. Creating and managing knowledge successfully
has been a key to success in various communities worldwide. Therefore, the
quality of knowledge is of high importance. One aspect of knowledge quality
is provenance. In particular, the sources for facts should be well documented,
since this provides several benefits such as a better detection of errors, decisions
based on the trustworthiness of sources etc. While provenance is an important
aspect of data quality [8], to date only few knowledge bases actually provide
provenance information. For instance, less than 3% of the more than 607.7 million
RDF documents indexed by Sindice1 contain metadata such such as creator,
created, source, modified, contributor, or provenance.2 This lack of provenance
? This work was partially supported by a grant from the European Union’s 7th Frame-
work Programme provided for the project LOD2 (GA no. 257943) and Eurostars
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1 http://www.sindice.com
2 Data retrieved on June 6, 2012.



information makes the validation of the facts in such knowledge bases utterly
tedious. In addition, it hinders the adoption of such data in business applications
as the data is not trusted [8]. The main contribution of this paper is the provision
of a fact validation approach and tool which can make use of one of the largest
sources of information: the Web.

More specifically, our system DeFacto (Deep Fact Validation) implements
algorithms for validating RDF triples by finding confirming sources for it on the
web. It takes a statement as input (e.g., that shown in Listing 1) and then tries
to find evidence for the validity of that statement by searching for textual infor-
mation in the web. In contrast to typical search engines, it does not just search
for textual occurrences of parts of the statement, but tries to find webpages
which contain the actual statement phrased in natural language. It presents the
user with a confidence score for the input statement as well as a set of excerpts
of relevant webpages, which allows the user to manually judge the presented
evidence.

DeFacto has two major use cases: (1) Given an existing true statement, it
can be used to find provenance information for it. For instance, the WikiData
project3 aims to create a collection of facts, in which sources should be pro-
vided for each fact. DeFacto could be used to achieve this task. (2) It can check
whether a statement is likely to be true, provide the user with a confidence score
in whether the statement is true and evidence for the score assigned to the state-
ment. Our main contributions are thus as follows: (1) An approach that allows
checking whether a webpage confirms a fact, i.e., an RDF triple, (2) an adap-
tation of existing approaches for determining indicators for trustworthiness of a
webpage, (3) an automated approach to enhancing knowledge bases with RDF
provenance data at triple level as well as (4) a running prototype of DeFacto,
the first system able to provide useful confidence values for an input RDF triple
given the Web as background text corpus.

The rest of this paper is structured as follows: Section 2 describes our gen-
eral approach and the system infrastructure. The next section describes how
we extended the BOA framework to enable it to detect facts contained in tex-
tual descriptions on webpages. In Section 4, we describe how we include the
trustworthiness of webpages into the DeFacto analysis. Section 5 combines the
results from the previous chapters and describes the mathematical features we
use to compute the confidence for a particular input fact. We use those features
to train different classifiers in Section 6 and describe our evaluation results.
Section 7 summarizes related work. Finally, we conclude in Section 8 and give
pointers to future work.

2 Approach

Input and Output: The DeFacto system consists of the components depicted in
Figure 1. The system takes an RDF triple as input and returns a confidence value

3 http://meta.wikimedia.org/wiki/Wikidata
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Fig. 1. Overview of Deep Fact Validation.

for this triple as well as possible evidence for the fact. The evidence consists of a
set of webpages, textual excerpts from those pages and meta-information on the
pages. The text excerpts and the associated meta information allow the user to
quickly get an overview over possible credible sources for the input statement: In-
stead of having to use search engines, browsing several webpages and looking for
relevant pieces of information, the user can more efficiently review the presented
information. Moreover, the system uses techniques which are adapted specifically
for fact validation instead of only having to rely on generic information retrieval
techniques of search engines.

Retrieving Webpages: The first task of the DeFacto system is to retrieve web-
pages which are relevant for the given task. The retrieval is carried out by is-
suing several queries to a regular search engine. These queries are computed
by verbalizing the RDF triple using natural-language patterns extracted by the
BOA framework4 [5, 4]. Section 3.2 describes how the search engine queries are
constructed. As a next step, the highest ranked webpages for each query are
retrieved. Those webpages are candidates for being sources for the input fact.
Both the search engine queries as well as the retrieval of webpages are executed
in parallel to keep the response time for users within a reasonable limit. Note
that usually this does not put a high load on particular web servers as webpages
are usually derived from several domains.

Evaluating Webpages: Once all webpages have been retrieved, they undergo sev-
eral further processing steps. First, plain text is extracted from each webpage
by removing most HTML markup. We can then apply our fact confirmation ap-
proach on this text, which is described in detail in Section 3. In essence, the algo-
rithm decides whether the web page contains a natural language formulation of
the input fact. This step distinguishes DeFacto from information retrieval meth-
ods. If no webpage confirms a fact according to DeFacto, then the system falls
back on lightweight NLP techniques and computes whether the webpage does at
4 http://boa.aksw.org



least provide useful evidence. In addition to fact confirmation, the system com-
putes different indicators for the trustworthiness of a webpage (see Section 4).
These indicators are of central importance because a single trustworthy webpage
confirming a fact may be a more useful source than several webpages with low
trustworthiness. The fact confirmation and the trustworthiness indicators of the
most relevant webpages are presented to the user.

Confidence Measurement: In addition to finding and displaying useful sources,
DeFacto also outputs a general confidence value for the input fact. This confi-
dence value ranges between 0% and 100% and serves as an indicator for the user:
Higher values indicate that the found sources appear to confirm the fact and can
be trusted. Low values mean that not much evidence for the fact could be found
on the Web and that the websites that do confirm the fact (if such exist) only
display low trustworthiness. The confidence measurement is based on machine
learning techniques and explained in detail in Sections 5 and 6. Naturally, De-
Facto is a (semi-)automatic approach: We do assume that users will not blindly
trust the system, but additionally analyze the provided evidence.

Using the LOD Cloud as Background Knowledge: As described above, DeFacto
relies primarily on natural language from several webpages as input. However,
in some cases, confirming facts for an input statement can be found in openly
available knowledge bases. Due to the fast growth of the LOD cloud, we expect
this source to become increasingly important in the future. In order to use this
additional evidence, DeFacto provides a preliminary component which searches
for similar statements in the LOD cloud. To achieve this goal, the system first
finds similar resources to the subject and object of the input triple, which is
currently done via the http://sameas.org service. In a second step, it retrieves
all triples which use the detected similar subject and object resources by deref-
erencing the corresponding Linked Data URIs. Finally, the labels of subject,
predicate and object of all triples are retrieved. Those are then compared via
string similarity techniques to the input triple. Currently, the average trigram
similarity of subject, predicate and object of the triple is used. In this article,
we focus on re-using textual evidence and plan to carry out a more detailed
evaluation of the LOD as background knowledge in future work.

1 dbpedia -res:Jamaica_Inn_ %28 film %29 dbpedia -owl:director
2 dbpedia -res:Alfred_Hitchcock .

Listing 1. Input data for Defacto.

A prototype implementing the above steps is available at http://defacto.
aksw.org. It shows relevant webpages, text excerpts and five different rankings
per page. The generated provenance output can also be saved directly as RDF.
For representing the provenance output, we use the W3C provenance group5 vo-
cabularies. The source code of both, the DeFacto algorithms and user interface,
are openly available6.
5 http://www.w3.org/2011/prov/
6 https://github.com/AKSW/DeFacto



It should be noted that we decided not to check for negative evidence of facts
in DeFacto, since a) we considered this to be too error-prone and b) negative
statements are much less frequent on the web. It is also noteworthy that DeFacto
is a self training system on two levels: For each fact, the user can confirm after
reviewing the possible sources whether he believes it is true. This is then added
to the training set and helps to improve the performance of DeFacto. The same
can be done for text excerpts of web pages: Users can confirm or reject whether
a given text excerpt actually does confirm a fact. Both machine learning parts
are explained in Sections 3 and 6.

3 BOA

The idea behind BOA is two-fold: first, it aims to be a framework that al-
lows extracting structured data from the Human Web by using Linked Data
as background knowledge. In addition, it provides a library of natural-language
patterns that allows to bridge the gap between structured and unstructured
data. The input for the BOA framework consists of a set of knowledge bases,
a text corpus (mostly extracted from the Web) and (optionally) a Wikipedia
dump7. When provided by a Wikipedia dump, the framework begins by gen-
erating surface forms for all entities in the source knowledge base. The surface
forms used by BOA are generated by using an extension of the method proposed
in [12]. For each predicate p found in the input knowledge sources, BOA carries
out a sentence-level statistical analysis of the co-occurrence of pairs of labels of
resources that are linked via p. BOA then uses a supervised machine-learning
approach to compute a score and rank patterns for each combination of cor-
pus and knowledge bases. These patterns allow generating a natural-language
representation of the RDF triple that is to be checked.

3.1 Training BOA for DeFacto

In order to provide a high quality fact confirmation component, we trained BOA
specifically for this task. We began by selecting the top 60 most frequently
used object properties from the DBpedia [13, 10] ontology using the DBpedia
Live endpoint8. This query retrieves 7,750,362 triples and covers 78% of the
9,993,333 triples in DBpedia with owl:ObjectPropertys from the DBpedia names-
pace.9 Currently, we focus on object properties. Adequate support of datatype
properties requires an extension of the presented methods, which is planned in
future work. For each of those properties, we selected the top 10 BOA patterns
(if available) sorted according to the number of triples this pattern has been
learned from. This resulted in a list of 488 patterns which were evaluated by
all four authors. During this process, each pattern was labeled by two persons
7 http://dumps.wikimedia.org/
8 http://live.dbpedia.org/sparql
9 Properties like wikiPageExternalLink, wikiPageRedirects, wikiPageDisambiguates
and thumbnail have been excluded.



independently. We judged a pattern as positive if it was not generic (e.g., “?D?
‘s " ?R?” ) or specific enough (e.g., “?D? in the Italian region ?R?” ) and could
be used to express the relation in natural text. The first group achieved a mod-
erate Cohen’s-Kappa value of 0.477 and the second group scored a good value
of 0.626. Every conflict was resolved by having the annotators agree on a single
annotation. The resulting annotations were used for a 10-fold cross-validation
training of BOA’s neural network. We achieved the maximum F-score of 0.732
with an error threshold of 0.01 and a hidden layer size of 51 neurons.

3.2 Automatic Generation of Search Queries

The found BOA patterns are used for issuing queries to the search engine (see
Figure 1). Each search query contains the quoted label of the subject of the input
triple, a quoted and cleaned BOA pattern (we remove punctuation characters
which are not indexed by the search engine) and the quoted label of the object of
the input triple. We use a fixed number of the best-scored BOA patterns whose
score was beyond a score threshold and retrieve the first n websites from a
web search engine. For our example from Listing 1, an examplary query sent to
the search engine is “Jamaican Inn” AND “written and directed by” AND
“Alfred Hitchcock”. We then crawl each website and try to extract possible
proofs for the input triple, i.e., excerpts of these webpages which may confirm
it. For the sake of brevity, we use proof and possible proof interchangeably.

3.3 BOA and NLP Techniques for Fact Confirmation

To find proofs for a given input triple we make use of the surface forms intro-
duced in [12]. We select all surface forms for the subject and object of the input
triple and search for all occurrences of each combination of those labels in a
website w. If we find an occurrence with a token distance d(l(s), l(o)) (where
l(x) is the label of x) smaller then a given threshold we call this occurrence a
proof for the input triple. To remove noise from the found proofs we apply a
set of normalizations by using regular expression filters which for example re-
move characters between brackets and non alpha-numeric characters. Note that
this normalization improves the grouping of proofs by their occurrence. After
extracting all proofs pi ∈ P(w) of a website w, we score each proof using a linear
regression classifier. We trained a classifier with the following input features for
scoring a proof:

BOA Pattern: This is a Boolean feature which is 1 if a BOA pattern is con-
tained in the normalized proof phrase.

BOA Score: If BOA patterns are found in the normalized proof phrase, then
the score of the highest score across the set of found patterns is written in
this feature. Else, this feature is set to 0.

Token Distance: This is the distance d(l(s), l(o)) between the two entity labels
which found the proof. We limit this distance to a maximum of 20 tokens.



Table 1. Performance measures for several classifiers on the fact confirmation task
(AUC = area under the ROC curve, RMSE = root mean squared error).

P R F1 AUC RMSE

Logistic Regression 0.769 0.769 0.769 0.811 0.4653
Naïve Bayes 0.655 0.624 0.564 0.763 0.5665
SVM 0.824 0.822 0.822 0.823 0.4223
RBFNetwork 0.735 0.717 0.718 0.718 0.485

Wordnet Expansion: We expand both the tokens of the normalized proof
phrase as well as all of the tokens of the BOA pattern with synsets from
Wordnet. Subsequently we apply the Jaccard-Similarity on the generated
expansions. This is basically a fuzzy match between the BOA pattern and
the proof phrase.

Total Occurrence: This feature contains the total number of occurrences of
each normalized proof phrase over the set of all normalized proof phrases.

Page Title: We apply the maximum of the trigram similarity measure between
the page title and the subject and object labels. This feature is useful,
because the title indicates the topic of the entire web page. When a title
matches, then higher token distances may still indicate a high probability
that a fact is confirmed.

End of Sentence: A boolean value if the potential proof contains a “.”, “!” or
a “?”. When subject and object are in different sentences, their relation is
more likely to be weaker.

Phrase: The words between the subject and object, which are encoded as binary
values, i.e. a feature is created for each word and its value is set to 1 if the
word occurs and 0 otherwise.

Property: The property as a word vector.

To train our classifiers, we randomly sampled 527 proofs and annotated them
manually. Those proofs were extracted with DeFacto from applying it on the
training set described in Section 6.1. The results are shown in Table 1. We
ran popular classifiers, which are able to work with numeric data and create
confidence values. The ability to generate confidence values for proofs is useful
as feedback for users and it also serves as input for the core classifiers described
in Section 6. Based on the obtained results, we selected support vector machines
as classifier. We also performed preliminary work on fine-tuning the parameters
of the above algorithms, which, however, did not lead to significantly different
results. The reported measurements were, therefore, done with default values of
the mentioned algorithms in the Weka machine learning toolkit10 version 3.6.6.

10 http://www.cs.waikato.ac.nz/ml/weka/



4 Trustworthiness Analysis of Webpages

To determine the trustworthiness of a website we first need to determine its
similarity to the input triple. This is determined by how many topics belonging
to the query are contained in a search result retrieved by the web search. We
extended the approach introduced in [14] by querying Wikipedia with the subject
and object label of the triple in question separately to find the topic terms for
the triple. A frequency analysis is applied on all returned documents and all
terms above a certain threshold that are not contained in a self-compiled stop
word list are considered to be topic terms for a triple. Let s and o be the URIs
for the subject and object of the triple in question and t be a potential topic
term extracted from a Wikipedia page. In addition, let X = (s, p, o).We compare
the values of the following two formulas:

p(t|X) =
|topic(t, d(X))|
|d(X)|

,

p(t|intitle(d(X), s ∨ o)) = |topic(t, intitle(d(X), s) ∪ intitle(d(X), o))|
|intitle(d(X), s) ∪ intitle(d(X), o)|

.

where d(X) is the set all web documents retrieved for X (see Section 3.2),
intitle(d(X), x) the set of web documents which have the label of the URI
x in their page title. topic(t, d(X)) is the set of documents which contain t
in the page body. We consider t to be a topic term for the input triple if
p(t|t(d(X), s) ∨ t(d(X), o)) > p(t|X). Let TX = {t1, t2, . . . , tn} be the set of
all topic terms extracted for a input triple. Defacto then calculates the trustwor-
thiness of a webpage as follows:

Topic Majority in the Web represents the number of webpages that have similar
topics to the webpage in question. Let P be the set of topic terms appearing on
the current webpage. The Topic Majority in the Web for a webpage w is then
calculated as:

tmweb(w) =

∣∣∣∣∣
n⋃

i=1

topic(ti, d(X))

∣∣∣∣∣− 1.

where t1 is the most occurring topic term in the webpage w. Note that we
subtract 1 to prevent counting w.

Topic Majority in Search Results calculates the similarity of a given webpage
for all webpages found for a given triple. Let wk be the webpage to be evaluated,
v(wk) be the feature vector of webpage wk where v(wk)i is 1 if ti is a topic
term of webpage wk and 0 otherwise, ‖v‖ be the norm of v and θ a similarity
threshold. We calculate the Topic Majority for the search results as follows:

tmsearch(w) =

∣∣∣∣{wi|wi ∈ d(X),
v(wk)× v(wi)

‖v(wk)‖ ‖v(wi)‖
> θ

}∣∣∣∣ .



Topic Coverage measures the ratio between all topic terms for X and all topic
terms occurring in w:

tc(w) =
|TX ∩ P|
|TX |

.

Pagerank: The Pagerank11 of a webpage is a measure for the relative impor-
tance of a webpage compared to all others, i.e. higher pageranks means that a
webpage is more popular. There is a positive correlation between popularity of
a webpage and its trustworthiness as those pages are more likely to be reviewed
by more people or may have gone under stricter quality assurance before their
publication.While a high pagerank alone is certainly not a sufficient indicator
for trustworthiness, we use it in combination with the above criteria in DeFacto.

5 Features for Deep Fact Validation

In order to obtain an estimate of the confidence that there is sufficient evidence
to consider the input triple to be true, we decided to train a supervised machine
learning algorithm. Similar to the above presented classifier for fact confirmation,
this classifier also requires computing a set of relevant features for the given task.
In the following, we describe those features and why we selected them.

First, we extend the score of single proofs to a score of web pages as follows:
When interpreting the score of a proof as the probability that a proof actually
confirms the input fact, then we can compute the probability that at least one
of the proofs confirms the fact. This leads to the following stochastic formula12,
which allows us to obtain an overall score for proofs scw on a webpage w:

scw(w) = 1−
∏

pr∈prw(w)

(1− fc(pr)) .

In this formula, fc (fact confirmation) is the classifier trained in Section 3.3,
which takes a proof pr as input and returns a value between 0 and 1. prw is a
function taking a webpage as input and returning all possible proofs contained
in it.

Combination of Trustworthiness and Textual Evidence In general, the trust-
worthiness of a webpage and the textual evidence we find in it, are orthogonal
features. Naturally, webpages with high trustworthiness and a high score for its
proofs should increase our confidence in the input fact. Therefore, it makes sense
to combine trustworthiness and textual evidence as features for the underlying
machine learning algorithm. We do this by multiplying both criteria and then
using their sum and maximum as two different features:

Ffsum(t) =
∑

w∈s(t)

(f(w) · scw(w)) Ffmax(t) = max
w∈s(t)

(f(w) · scw(w))

11 http://en.wikipedia.org/wiki/Pagerank
12 To be exact, it is the complementary even to the case that none of the proofs do

actually confirm a fact.



In this formula f can be instantiated by all four trustworthiness measures: topic
majority on the the web (tmweb), topic majority in search results (tmsearch),
topic coverage (tc) and pagerank (pr). s is a function taking a triple t as argu-
ment, executing the search queries explained in Section 3.2 and returning a set
of webpages. Using the formula, we obtain 8 different features for our classifier,
which combine textual evidence and different trustworthiness measures.

Other Features In addition to the above described combinations of trustworthi-
ness and fact confirmation, we also defined other features:

1. The total number of proofs found.
2. The total number of proofs found above a relevance threshold of 0.5. In some

cases, a high number of proofs with low scores is generated, so the number
of high scoring proofs may be a relevant feature for learning algorithms.

3. The total evidence score: This is the probability that at least one of the
proofs is correct, which is defined analogously to scw above:

1−
∏

pr∈prt(t)

(1− sc(pr)) .

4. The total evidence score above a relevance threshold of 0.5. This is an adap-
tion of the above formula, which considers only proofs with a confidence
higher than 0.5.

5. Total hit count: Search engines usually estimate the number of search results
for an input query. The total hit count is the sum of the estimated number
of search results for each query send by DeFacto for a given input triple.

6. A domain and range verification: If the subject of the input triple is not
an instance of the domain of the property of the input triple, this violates
the underlying schema, which should result in a lower confidence in the
correctness of the triple. This feature is 0 if both domain and range are
violated, 0.5 if exactly one of them is violated and 1 if there is no domain or
range violation.

6 Evaluation

Our main objective in the evaluation was to find out whether DeFacto can effec-
tively distinguish between true and false input facts. In the following, we describe
how we trained DeFacto using DBpedia, which experiments we used and discuss
the results of our experiments.

6.1 Training DeFacto

As mentioned in Section 3, we focus our experiments on the top 60 most fre-
quently used properties in DBpedia. The system can easily be extended to cover
more properties by extending the training set of BOA to those properties. Note



that DeFacto itself is also not limited to DBpedia, i.e., while all of its compo-
nents are trained on DBpedia, the algorithms can be applied to arbitrary URIs.
A performance evaluation on other knowledge bases is subject to future work,
but it should be noted that most parts of DeFacto – except the LOD background
feature described in Section 2 and the schema checking feature in Section 5 work
only with the retrieved labels of URIs and, therefore, do not depend on DBpedia.

For training a supervised machine learning approach, positive and negative
examples are required. Those were generated as follows:

Positive Examples: In general, we use facts contained in DBpedia as positive
examples. For each of the properties we consider (see Section 3), we generated
positive examples by randomly selecting triples containing the property. We
collected 600 statements in this manner and verified them by checking manually
whether it was indeed a true fact. It turned out that some of the obtained triples
were modeled incorrectly, e.g. obviously violated domain and range restrictions
or could not be confirmed by an intensive search on the web within ten minutes.
Overall, 473 out of 600 checked triples were facts could be used as positive
examples.

Negative Examples: The generation of negative examples is more involved than
the generation of positive examples. In order to effectively train DeFacto, we
considered it essential that many of the negative examples are similar to true
statements. In particular, most statements should be meaningful triples. For
this reason, we derived the negative examples from positive examples by modi-
fying them while still following domain and range restrictions. Assume the input
triple (s, p, o) in a knowledge base K is given and let dom and ran be functions
returning the domain and range of a property13. We used the following meth-
ods to generate the negative example sets dubbed subject, object, subject-object,
property, random, 20%mix (in that order):

1. A triple (s′, p, o) is generated where s′ is an instance of dom(p), the triple
(s′, p, o) is not contained in K and s′ is randomly selected from all resources
which satisfy the previous requirements.

2. A triple (s, p, o′) is generated analogously by taking ran(p) into account.
3. A triple (s′, p, o′) is generated analogously by taking both dom(p) and ran(p)

into account.
4. A triple (s, p′, o) is generated in which p′ is randomly selected from our

previously defined list of 60 properties and (s, p′, o) is not contained in K.
5. A triple (s′, p′, o′) is generated where s′ and o′ are randomly selected re-

sources, p′ is a randomly selected property from our defined list of 60 prop-
erties and (s′, p′, o′) is not contained in K.

6. 20% of each of the above created negative training sets were randomly se-
lected to create a heterogenous test set.

13 Technically, we used the most specific class, which was explicitly stated to be domain
and range of a property, respectively.



Note that all parts of the example generation procedure can also take implicit
knowledge into account, e.g., by simply extending our approach to use SPARQL
1.1 entailment14. In case of DBpedia Live we did not use any entailment this for
performance reasons and because it would not alter the results in that specific
case.

Obviously, it is possible that our procedure for generating negative examples
also generates true statements which just happen not to be contained in DB-
pedia. Similar to the analysis of the positive examples, we checked a sample of
the negative examples on whether they are indeed false statements. This was
the case for all examples in the sample. Overall, we obtained an automatically
created and manually cleaned training set, which we made publicly available15.

6.2 Experimental Setup

In a first step, we computed all feature vectors, described in Section 5 for the
training set. DeFacto relies heavily on web requests, which are not deterministic
(i.e. the same search engine query does not always return the same result). To
achieve deterministic behavior and to increase the performance as well as reduce
load on the servers, all web requests are cached. The DeFacto runtime for an
input triple was on average slightly below 5 seconds per input triple16 when
using caches.

We stored the features in the arff file format and employed the Weka ma-
chine learning toolkit17 for training different classifiers. In particular, we were
interested in classifiers which can handle numeric values and output confidence
values. Naturally, confidence values for facts such as, e.g. 95%, are more useful
for end users than just a binary response on whether DeFacto considers the in-
put triple to be true, since they allow a more fine-grained assessment. Again, we
selected popular machine-learning algorithms satisfying those requirements.

We performed 10-fold cross-validations for our experiments. In each experi-
ment, we used our created positive examples, but varied the negative example
sets described above to see how changes influence the overall behavior of De-
Facto.

6.3 Results and Discussion

The results of our experiments are shown in Tables 2-4. Three algorithms – J48,
logistic regression and support vector machines – show promising results. Given
the challenging tasks, F-measures up to 78.8% for the combined negative example
set appear to be very positive indicators that DeFacto can be used to effectively
distinguish between true and false statements, which was our primary evaluation
14 http://www.w3.org/TR/sparql11-entailment/
15 http://aksw.org/projects/DeFacto
16 The performance is roughly equal on server machines and notebooks, since the web

requests dominate.
17 http://www.cs.waikato.ac.nz/ml/weka/



Table 2. Classification results for trainings sets subject and object.

Subject Object
P R F1 AUC RSME P R F1 AUC RMSE

Logistic Regression 0.799 0.753 0.743 0.83 0.4151 0.881 0.86 0.859 0.844 0.3454
Naïve Bayes 0.739 0.606 0.542 0.64 0.6255 0.795 0.662 0.619 0.741 0.5815
SVM 0.811 0.788 0.784 0.788 0.4609 0.884 0.867 0.865 0.866 0.3409
J48 0.835 0.827 0.826 0.819 0.3719 0.869 0.862 0.861 0.908 0.3194
RBF Network 0.743 0.631 0.583 0.652 0.469 0.784 0.683 0.652 0.75 0.4421

Table 3. Classification results for trainings sets subject-object and property.

Subject-Object Property
P R F1 AUC RSME P R F1 AUC RMSE

Logistic Regression 0.871 0.85 0.848 0.86 0.3495 0.822 0.818 0.818 0.838 0.3792
Naïve Bayes 0.813 0.735 0.717 0.785 0.5151 0.697 0.582 0.511 0.76 0.6431
SVM 0.88 0.863 0.861 0.855 0.3434 0.819 0.816 0.816 0.825 0.3813
J48 0.884 0.871 0.87 0.901 0.3197 0.834 0.832 0.832 0.828 0.3753
RBF Network 0.745 0.687 0.667 0.728 0.4401 0.72 0.697 0.688 0.731 0.4545

objective. In general, DeFacto also appears to be stable against the various
negative example sets. In particular, the algorithms with overall positive results
also seem less affected by the different variations. When observing single runs of
DeFacto manually, it turned out that our method of generating positive examples
is particularly challenging for DeFacto: For many of the facts in DBpedia only
few sources exist in the Web. While it is widely acknowledged that the amount
of unstructured textual information in the Web by far surpasses the available
structured data, we found out that a significant amount of statements in DBpedia
is difficult to track back to reliable external sources on the Web even with an
exhaustive manual search. There are many reasons for this, for instance many
facts are particular relevant for a specific country, such as “Person x studied at
University y.”, where x is a son of a local politician and y is a country with
only limited internet access compared to first world countries. For this reason,
BOA patterns could be only be detected directly in 29 of the 527 proofs of

Table 4. Classification results for trainings sets random and 20%mix.

Random 20% Mix
P R F1 AUC RMSE P R F1 AUC RMSE

Logistic Regression 0.855 0.854 0.854 0.908 0.3417 0.665 0.645 0.634 0.785 0.4516
Naïve Bayes 0.735 0.606 0.544 0.853 0.5565 0.719 0.6 0.538 0.658 0.6267
SVM 0.855 0.854 0.854 0.906 0.3462 0.734 0.729 0.728 0.768 0.4524
J48 0.876 0.876 0.876 0.904 0.3226 0.8 0.79 0.788 0.782 0.405
RBF Network 0.746 0.743 0.742 0.819 0.4156 0.698 0.61 0.561 0.652 0.4788



positive examples. This number increased to 195 out of 527 when we employed
the WordNet expansion described in Section 3.3. In general, DeFacto performs
better when the subject and object of the input triple are popular on the web,
i.e. there are several webpages describing them. In this aspect, we believe our
training set is indeed challenging upon manual observation.

7 Related Work

While we are not aware of existing work in which sources for RDF statements
were detected automatically from the Web, there are three main areas related
to DeFacto research: The representation of provenance information in the Web
of Data as well as work on trustworthiness and relation extraction. The problem
of data provenance is a crucial issue in the Web of Data. While data extracted
by the means of tools such as Hazy18 and KnowItAll19 can be easily mapped
to primary provenance information, most knowledge sources were extracted by
non-textual source and are more difficult to link with provenance information.
In the work described in [9], Olaf Hartig and Jun Zhao developed a framework
for provenance tracking. This framework provides the vocabulary required for
representing and accessing provenance information on the web. It keeps track of
who created a web entity, e.g. a webpage, when it was last modified etc. Recently,
a W3C working group has been formed and released a set of specifications on
sharing and representing provenance information20. Dividino et al. [3] introduced
an approach for managing several provenance dimensions, e.g. source, and times-
tamp. In their approach, they describe an extension to the RDF called RDF+

which can work efficiently with provenance data. They provided a method to ex-
tend SPARQL query processing in a manner such that a specific SPARQL query
can request meta knowledge without modifying the query itself. Theoharis et
al. [18] argued how the implicit provenance data contained in a SPARQL query
results can be used to acquire annotations for several dimensions of data quality.
They detailed the abstract provenance models and how they are used in rela-
tional data, and how they can be used in semantic data as well. Their model
requires the existence of provenance data in the underlying semantic data source.
DeFacto uses the W3C provenance group standard for representing provenance
information. Yet, unlike previous work, it directly tries to find provenance infor-
mation by searching for confirming facts in trustworthy webpages.

The second related research area is trustworthiness. Nakamura et al. [14]
developed an efficient prototype for enhancing the search results provided by a
search engine based on trustworthiness analysis for those results. They conducted
a survey in order to determine the frequency at which the users accesses search
engines and how much they trust the content and ranking of search results. They
defined several criteria for trustworthiness calculation of search results returned

18 http://hazy.cs.wisc.edu/hazy/
19 http://www.cs.washington.edu/research/knowitall/
20 http://www.w3.org/2011/prov/wiki/



by the search engine, such as topic majority. We adapted their approach for De-
Facto and included it as one of the features for our machine learning techniques.
[16, 17] present an approach for computing the trustworthiness of web pages. To
achieve this goal, the authors rely on a model based on hubs and authorities.
This model allows to compute the trustworthiness of facts and websites by gen-
erating a k-partite network of pages and facts and propagating trustworthiness
information across it. The approach returns a score for the trustworthiness of
each fact. An older yet similar approach is that presented in [20]. Here, the idea
is to create a 3-partite network of webpages, facts and objects and apply a prop-
agation algorithm to compute weights for facts as well as webpages. The use of
trustworthiness and uncertainty information on RDF data has been the subject
of recent research (see e.g., [7, 11]). Our approach differs from these approaches
as it does not aim to evaluate the trustworthiness of facts expressed in natural
language. In addition, it can deal with the broad spectrum of relations found on
the Data Web.

Most tools that address this task rely on pattern-based approaches. Some
early work on pattern extraction relied on supervised machine learning [6]. Our
approach is also related to relation extraction. Yet, such approaches demanded
large amounts of training data, making them difficult to adapt to new relations.
The subsequent generation of approaches to RE aimed at bootstrapping pat-
terns based on a small number of input patterns and instances. For example, [2]
presents the Dual Iterative Pattern Relation Expansion (DIPRE) and applies it
to the detection of relations between authors and titles of books. This approach
relies on a small set of seed patterns to maximize the precision of the patterns for
a given relation while minimizing their error rate of the same patterns. Snow-
ball [1] extends DIPRE by a new approach to the generation of seed tuples.
Newer approaches aim to either collect redundancy information (see e.g., [19])
in an unsupervised manner or to use linguistic analysis [15] to harvest generic
patterns for relations.

8 Conclusion and Future Work

In this paper, we presented DeFacto, an approach for checking the validity of
RDF triples using the Web as corpus. We showed that our approach achieves an
average F1 measure (J48 for all 6 datasets) of 0.843 on DBpedia. Our approach
can be extended in manifold ways. First, BOA is able to detect natural-language
representations of predicates in several languages. Thus, we could have the user
choose the languages he understands and provide facts in several languages,
therewith also increasing the portion of the Web that we search through. Fur-
thermore, we could extend our approach to support data type properties. In
addition to extending our approach by these two means, we will also focus on
searching for negative evidence for facts, therewith allowing users to have an
unbiased view of the data on the Web through DeFacto. On a grander scale, we
aim to provide even lay users of knowledge bases with the means to check the
quality of their data by using natural language input.
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