
An Evidence-based Verification Approach to
Extract Entities and Relations for Knowledge

Base Population

Naimdjon Takhirov1, Fabien Duchateau2 and Trond Aalberg1

1 Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
{takhirov,trondaal}@idi.ntnu.no

2 Université Lyon 1, LIRIS, UMR5205, Lyon, France
fduchate@liris.cnrs.fr

Abstract. This paper presents an approach to automatically extract
entities and relationships from textual documents. The main goal is to
populate a knowledge base that hosts this structured information about
domain entities. The extracted entities and their expected relationships
are verified using two evidence based techniques: classification and link-
ing. This last process also enables the linking of our knowledge base to
other sources which are part of the Linked Open Data cloud. We demon-
strate the benefit of our approach through series of experiments with
real-world datasets.

Keywords: Linked Data, Knowledge Extraction, Machine Learning

1 Introduction

The Web, which includes databases, catalogs and all textual documents, is a
wealthy and a primary source of information. Thus, there is a need for exploit-
ing this tremendous growth of the amount of online information as a source
of structured knowledge [22]. Unfortunately, computers are not able to inter-
pret this information due to a lack of semantics. However, the emergence of
knowledge bases such as DBpedia and Freebase3 in the Linked Open Data cloud
(LOD), nowadays contain billions of facts expressed as RDF triples represent-
ing instances of relations between entities [4]. Researchers from various domains
are increasingly interested in making their data available as part of the LOD,
because a proper semantic integration of this data enables advanced semantic
services. Examples of such services include exploratory search, supporting so-
phisticated and semantically rich queries, interoperability, question answering,
etc. Converting the unstructured information, mainly the textual documents, to
semantic models is therefore crucial to reach the expected Web of Data [15]. For
instance, one of the most widely spread data representation used in the cultural
heritage domain is MARC and its alternative forms. However, the Functional

3 The complete list of interconnected bases can be found at http://linkeddata.org/

2

Requirements for Bibliographic Records (FRBR) model has gained much atten-
tion during the last decade as an underlying and much needed semantic data
model for the cultural heritage data [20]. In this context, one of the most signifi-
cant challenges deals with the extraction of semantic information hidden in
plain documents [6, 8, 14]. Indeed, the textual documents are interesting because
they may contain information that is otherwise missing or incomplete in the
existing knowledge bases in the LOD cloud. Sentences in the documents include
named entities which are connected with a specific type of relationship, e.g. Mar-
tin Scorsese directed the movie The Departed. Besides, the interconnection of
the LOD data sources brings benefit for sharing and inferring knowledge [12].
Thus, extracting related entities from documents is not sufficient, and they need
to be connected to the LOD cloud.

In this paper, we propose to tackle these two challenges. Our approach,
KIEV4 first extracts examples for a given relationship from textual documents.
Indeed, some relationships are rarely encompassed in the structured data sources,
but they can be found in textual documents (such as the Web). Mining these
relationships with a pattern-based technique involves the discovery of a large
amount of examples. Thus, a verification of these examples is performed at two
levels: (i) the type of relationship is checked with a machine learning approach
and (ii) the extracted entities are matched to LOD for both verification and in-
tegration purposes. In addition to these challenges, our approach KIEV should
perform reasonably well in terms of efficiency at the Web scale since every page
is a potential source of examples and good patterns. As a summary, the contri-
butions of this paper are the following:
– We designed a generic approach for extracting semantic relationships from

a large text corpora which integrates a verification process;
– These relationships are filtered and verified with a classification technique

and an entity matching process. In addition, the link from our generated
entity to its corresponding LOD entity enables the connection and possible
reasoning over all interconnected knowledges bases;

– Finally, we have conducted experiments with real-world datasets (about
movies and sports) to evaluate the quality and the robustness of our ap-
proach.

The rest of this paper is organized as follows. Section 2 introduces the for-
malization of our problem and provides an overview of KIEV. Section 3 covers
the first part of our approach, the discovery of examples by using patterns, while
Section 4 and 5 focus on the evidence-based verification of these examples. The
related work is described in Section 6. Our experiments are detailed in Section 7.
Finally, we conclude in Section 8.

2 Overview of our Approach

Our goal can be seen as the creation of a knowledge base of entities
and relationships. Simply assuming the existence of a repository of domain
4 KIEV – Knowledge and Information Extraction with Verification

3

entities would limit our approach. Rather, we extract entities from the textual
documents, and as a consequence, our approach should also work with entities
which have been previously identified (i.e., from a repository). A relationship
is defined as a triple <entity1, type-of-relationship, entity2>. As an example,
considering the 2006 “The Departed” movie directed by Martin Scorsese as a
remake of the Andrew Lau’s “Infernal Affairs” from 2002, the example would be
represented as <“Infernal Affairs”, hasImitation, “The Departed”>.

DBpedia Freebase

OpenCyc

LOD Knowledge Bases

Classification

Linking

Relationship
ClassDiscover

Examples
Knowledge

BaseExamples

Linked
Entities

Training
Examples

Documents

Verified Example

Input / output
Interlinking
Query endpoint

Fig. 1. Overview of our Approach.

Figure 1 depicts the global overview of KIEV. Given a type of relationship,
KIEV requires a collection of documents and a few training examples (verifying
the types of relationship) to bootstrap a possible infinite loop. The first step
consists of discovering examples from the textual collection (see Section 3).
It is based on semantic tagging which combines Named Entity Recognition and
Part of Speech tagging, and it generates many examples for the concepts con-
tained in a sentence. Thus, a verification of the relevance for these examples is
performed with two other processes. The former checks if the extracted entities
are effectively related with the type of relationship using a machine learning
classifier (see Section 4). The latter process links both extracted entities
of an example to their corresponding entities on the LOD cloud (see Section 5).
Once an example is verified, it can be used as a training example to improve
the classifier, but also to reinforce the confidence score of a pattern during the
discovery process.

4

3 Discovering Examples

The core idea of our approach is to process the input as a stream of documents
and to iteratively update our semantic knowledge base of entities. In this section,
we describe the first part of our approach – discovering examples. An example for
a given type of relationship is composed of two entities (e.g., for imitation type
of relationship, an example is <“Infernal Affairs”, “The Departed”>). Figure 2
provides the big picture of the example discovery workflow, whose goal is to
generate a set of examples. Each process in the workflow of discovering examples
is presented below.

Martin
Scorsese/PERSON's/POS
movie/NN The Departed/

CONCEPT
is/VBZ based/VBN on/IN

Internal Affairs/CONCEPT.
….

Martin Scorsese's
movie The
Departed

is based on
Internal Affairs.

….

Stream
Processor

e1
e2
…
ek

d1
d2
…
s1

based
parody

imitation
travesty

….

Freq. Terms
Collection

s1
s2
…
sm

Tagging
(NER, POS)

Example
and Pattern
Generator

x1("Martin Scorsese","The Departed")
x2("Martin Scorsese","Internal Affairs")
x3("The Departed","Internal Affairs")

….

Frequent
Terms

Examples

POS-Possesive ending, NN-Singular noun, VBZ-Verb, 3rd
ps. sing. present, VBN-Verb, past participle, IN-Preposition

 e1 VBZ {based, parody...} IN e2
…

Patterns

Fig. 2. Workflow of Processes for Discovering Examples

3.1 Stream Processing

Stream processor (SP) accepts as an input documents in textual form. The first
task the SP performs is to pre-process the input. For example, this task may
involve cleaning the html documents for tags, removing headers from emails,
etc . At this point, we are interested in only obtaining text regardless of the
quality. Each document d ∈ D is segmented into a list of sentences such that
d = {Si | i = 1 . . . N} where N is the number of sentences. A sentence Si is
discarded if Si−1 and Si+1 contain no entities. This is because Si may contain
a personal pronoun referring to the previous sentence, e.g. “Martin Scorsese
is an American film director. He is the creator of Taxi Driver.”. Additionally,
the sentences are filtered out to eliminate those that were likely to be noisy
(broken and invalid sentences) and not useful for example discovery (e.g., non-
English sentences, sentences missing verb, sentences with only uppercase letters

5

or only with lowercase letters, sentences without capital letters, etc.). The next
step deals with the semantic tagging of the selected sentences with named entity
recognition (NER) and part-of-speech (POS) tags.

3.2 Tagging

For each sentence s ∈ Si, named entity recognition is performed to detect the set
of entities E (person, location, organization, dates, etc.). Consider a document
containing the following sentence: Infernal Affairs was followed by a 2006 Amer-
ican remake by Martin Scorsese entitled The Departed. From this sentence, two
concepts are detected and one person. Traditionally, NER is focused around the
detection of common entities such as people, organization or geographic location.
However, the recognition of domain specific entities poses a particular challenge
because the NER tools usually require training examples for the types of entities
to recognize. In our context of textual documents from the Web, providing such
examples is not possible.

To avoid missing entities, a POStagger is first applied on all sentences. Our
assumption is that entities are POStagged as “noun”. Thus, we consider that all
nouns in the sentences are entities. A NER tool can confirm some of these
entities. Although this assumption implies the identification of many incorrect
entities, the next steps are in charge of discarding those irrelevant entities. The
output of the semantic tagger is a set of semantically and structurally tagged
sentences, from which we can extract frequent terms.

3.3 Frequent Terms Collection

Terms that appear frequently in the same sentence with a pair of entities are
likely to be highly relevant to the pair of entities. For example, in the
sentence “Martin Scorsese’s movie The Departed is based on Internal Affairs”,
frequent terms are movie and based on because they appear frequently together
with the entities in the sentence.

In order to collect these frequent terms, all possible word n-grams are first
identified in the sentence s. The top thousand most common words on the Web5

are excluded and cannot be part of frequent terms. Then, the sentence s is
splitted into a set of words. A list of n-grams is constructed out of this list. After
the list of n-grams has been obtained, we look up Wordnet lexical database to
obtain the list Φ of semantically related words. These words are grouped into
unordered sets (synsets). Stopwords (e.g., “the”, “a”, “but” etc.) are removed and
stemming is performed. The following Wordnet relations are used:

– synonymy (e.g., “writer” and “novelist”), words that denote the same concept
and are interchangeable in many contexts.

– hyponym, a word whose semantics are included within that of another word6,
e.g., “The Departed is a movie”.

5 This list is available from Microsoft Web N-gram Service: http://bit.ly/bFKSxz
6 This is similar to is-a relationship

6

Since the synsets obtained from Wordnet have a shared information content,
i.e., hierarchy of is-a concepts, this list of semantically similar words can be larger
than desired. Thus, to control the level of granularity of this list of concepts, we
employ the Resnik similarity to prune those that are below a given threshold [16].
This similarity measure is applied between the segmented n-grams and each of
the synsets in Φ. For example, the distance between “novel” and “book” is 0.29.

These frequent terms are generated for different objectives such as the clas-
sification of examples through features, but also to generate the examples as
explained in the next part.

3.4 Example and Pattern Generator

Having obtained the lists of named entities and frequent terms, a set of can-
didate examples is built. One of our goals is to populate a knowledge base
that can serve as a repository of distinct entities. First, a set of unique pair of
entities Θ is constructed such that Θ = {(ei, ej)|ei 6= ej , ei ∈ E , ej ∈ E}. At first
glance, it appears that we generate overly many examples and this most likely
leads to a fair number of false positives. But we will show in section 4 that our
classification approach effectively discards these irrelevant examples. Our basic
assumption with generating so many examples is to reduce the likelihood of low
recall.

At this time, we can generate patterns based on the information from
the frequent terms collector. That is, we mask the named entities (e.g. “Infernal
Affairs” ⇒ e1, “The Departed” ⇒ e2). The idea is to obtain entity and word
independent patterns, as shown in the Figure 2. At the end of each iteration,
a list of patterns is generated from the candidate examples. If the pattern had
been generated before, its statistics are updated from the current iteration. For
patterns {p1, . . . , pn}, we compute the pattern similarity using the Levenshtein
distance and those above a given threshold are merged into a set of patterns Pp.
By now, we know the amount of patterns generated in this iteration (Pi). We
note the list Xp of examples that support this pattern. The patterns generated
at iteration i are ranked according to the following scoring function:

score(p) =
α occ(p)

i + β
|Pp|
|Pi| + γ

|Xp|
|X|

α+ β + γ

where occ(p) is the number of iterations this pattern has been discovered out
of total number of iterations i. X denotes the number of total examples in the
system. The scores are normalized in the range [0, 1]. The patterns generated
during this iteration will be used to discover new examples in the next iteration.
These patterns will also be used as features during the classification process.

As previously explained, all of the examples discovered so far may not be
correct. In the next section, we will show how a classifier effectively discards
false positives.

7

4 Classification

The first part of the verification is to check that the candidate entities (repre-
sented with a label) are related with a type of relationship. Indeed, a sentence
may contain different entities and the discovery process generates in that case
incorrect examples, mainly because of the pattern-based matching. The clas-
sification aims at discarding these incorrect examples without prior knowledge
about the two entities. To fulfill this goal, the verification process can be seen as
a classification problem [13]. Given a set of features (properties), the idea is
to find the correct class for a given example (extracted from a sentence). Each
class represents a type of relationship (e.g., imitation, adaptation). For instance,
the example (James Cameron, Avatar) should be classified in the class creato-
rOf. A specific class named unknown relationship is added as a garbage class to
collect all incorrect examples or those that cannot be classified in another class.
To select the correct class for an example, a classifier is trained using training
examples, i.e., examples for which the correct class is already known. Although
the training process depends on the type of classifier (e.g., decision tree, Bayes
network), it mainly consists of minimizing the misclassification rate when clas-
sifying the training examples according to the values of their features [13]. To
compute these values, each training example is used as a query over the docu-
ment collection and all sentences containing the two entities of the example are
analyzed given the following features: the frequency and the presence of any fre-
quent terms (e.g., parody), the length and structure of the best-ranked pattern
which generated the example (see Section 3.4), the average spamscore of the
documents from which the pattern is extracted [7]. Note that this paper does
not aim at designing a new classifier, but we rather use existing ones from the
Weka environment [9]. More formally, an example x ∈ X is defined by a set of
features F . We note the set of training examples T , with T ⊆ X . Each example
can be assigned a class c ∈ C. Given a (type of) classifier Γ , we formulate the
training as a process to obtain an instance γ of this classifier as follows:

Γ (T ,F , C)→ γ

The advantage of building a generic classifier rather than many binary classifiers
(for each type of relationship) is that the former enables the verification of dif-
ferent types of relationships. Consider a query for “imitation”, we could obtain
the pair of entities <“Infernal Affairs”, “The Departed”> and <“The Departed”,
Martin Scorsese”>. With a binary classifier for “imitation”, we would only keep
the first example. With a generic classifier, we would store both examples (clas-
sified in different classes). When an instance of a classifier which best minimizes
the misclassification rate is trained, we can use this instance γ for assigning
classes to the unclassified examples:

γ(X ,F , C)→ <(x1, c1), (x2, c1), (x3, c4), . . . , (xk, cn)>

In our context, we cannot assume that the user provides many initial train-
ing data. A set of 5 to 10 examples for each class is realistic. However, some

8

classifiers are robust with a few training examples while other classifiers achieve
better results with more training data. Two problems arise from these remarks:
the former is about selecting which examples should be added as training data
while the latter deals with the choice of the classifier for each iteration. Let us
discuss the choice of the training data first. To improve the robustness of the
classifier, one has to train it with more data. To add new examples as training
data, we have to select them among the sets of discovered examples from the
previous iterations. We propose two strategies to achieve this goal. The first one
(linking based) consists in selecting all examples that have been verified (with
the classification step and the linking process) during any previous iterations.
The second strategy (frequency based) is based on a frequency constraint: all ex-
amples which have been discovered in half of the previous iterations are added as
training data during the current iteration. We believe that this selection of train-
ing data could be investigated further, e.g., when combining the two described
strategies.

As for the selection of the classifier, the idea is the following: with the
selected training examples, we generate instances of different types of classifiers
(decision trees such as J48 or NBTree, instance-based such as KStar or IBk,
rule-based such as NNge or JRip, etc.). We perform cross-validation against the
set of training examples for each instance of a classifier, and we compute the
misclassification rate for each of them. The instance of classifier which achieves
the minimal misclassification rate is selected to classify the examples discovered
at this iteration. Such a strategy enables us to ensure that the best classifier is
used for each iteration, but it also brings more flexibility to our approach.

We will show the impact of the training data and the type of classifiers in
Section 7. The result of the classifier is a set of pairs, each of them composed of
an example and its verified relationship class. The next step is to check whether
the two extracted entities have a corresponding LOD entity.

5 Entity Linking

Entity Linking is the task of discovering local entity’s correspondence in another
data source [19]. The interest in linking entities is increasing rapidly due to the
LOD movement. Note that linking does not imply coreference resolution is per-
formed, but linking partially solves the coreference resolution problem. For ex-
ample, the local entities “Martin Scorcese” and “Scorcese” are both linked to the
same DBpedia entity Martin_Scorsese. The kind of linking we are performing
here differs from structure-based linking as we only have labels at our dis-
posal. The core of the idea is to match the entity against existing general
purpose semantic knowledge bases such as DBpedia or Freebase to obtain
corresponding LOD entities. Namely, we build various queries by decomposing
the initial label and we query in the descriptive text attributes of knowledge
bases (i.e., common.topic.article for Freebase, dbpedia-owl:abstract for DBpedia,
etc.). In most cases, several candidate entities are returned and the task deals
with automatically selecting the correct one. To fulfill this goal, the intuition is

9

based on the hypothesis that the document about entity e and the descriptive
text of LOD entity l should be fairly similar. Linking is performed for each entity
of each document. That means that each document where e is mentioned serves
as a context for disambiguation and matching against LOD knowledge bases.
We note ξ the vector of terms in e’s document, while Λ represents the vector of
terms of l. Terms in both documents are treated using bag-of-words method and
both the context of e and the descriptive text of l are represented as a point in
an n-dimensional term space. The cosine similarity score between the vectors ξ
and Λ is calculated as follows:

sim(ξ,Λ) =

n∑
i=1

ξi ×Λi√
n∑

i=1

(ξi)2 ×
√

n∑
i=1

(Λi)2

where n is the size of the vocabulary. The terms in both vectors are based on
classical tf/idf scores while the vocabulary is created out of the whole document
collection. The top ranked entities are chosen as candidates for further com-
parison. This last comparison is performed on labels (and optionally “redirects”
property) of the two entities to ensure a reasonable similarity in the label of e
and one of the labels of l (e.g. “rdfs:label” and “dbpedia-owl:wikiPageRedirects”
for DBpedia). This comparison is necessary because even though the similar-
ity function returns a sufficiently high cosine similarity score, the labels should
also be lexically similar. At this stage, the three well-known similarity measures
are applied (Jaro Winkler, Monge Elkan and Scaled Levenshtein) as described
in [19]. The top linked LOD entity is stored and is considered as a candidate
until the end of the iteration. At the end of an iteration, all verified relationships
(both by the classification and the linking) are converted into triples: for each
entity, some triples express the link to LOD, the different labels and other pos-
sible attributes. One triple represents the relationship between the two entities
and the type of relationship. Thus, the knowledge base is populated iteratively
and can run continuously.

6 Related Work

In the field of knowledge extraction, various works have been proposed to dis-
cover relationships for specific domains [22]. For instance, Snowball associates
companies to the cities where their headquarter is located [1] while DIPRE
focuses on books and authors [5]. To increase the quality and the consistency
of generated facts, systems may either be based on general ontologies such as
Yago [14] or on logical rules associated with a SAT solver [18]. The last trend
in this domain deals with Open Information Extraction, in which the large
scale aspect of the Web is taken into account [8]. However, none of these works
clearly aim at building a semantic knowledge base, thus there is no linking with
the LOD cloud.

10

DBpedia is one of the first initiative to automatically extract structured
content from Wikipedia [4]. It relies on the infoboxes provided by the knowledge-
sharing community. Since, many companies and organizations have added their
own knowledge base to the LOD cloud, from generic ontologies such asYago and
Freebase to specialized bases such as MusicBrainz or LinkedMDB [10]. The
process for converting unstructured or semi-structured data sources into facts
is called Triplification7. For instance, Triplify has been designed to extract
triples from Relational databases and expose them on LOD [2] while Catriple
builds a store of triples from Wikipedia categories [11]. Similarly to most of these
approaches, we generate triples and store them in our knowledge base.

In the Information Retrieval domain, researchers have studied the discovery
of the corresponding LOD entities for a given task, such as in the TREC chal-
lenge [3]. Due to the large scale application and the uncertainty of the results,
a ranking of the most probable entities which correspond to the query (usually
with target categories) is computed [21, 17]. The linking to LOD for disambigua-
tion and enrichment has also been studied for any bag of words [12] as well as
for FRBR entities [19]. In our context, the entities are extracted from textual
documents and usually represented with a label. The surrounding context of
the label in the sentence is the main information available for discovering the
corresponding LOD entity.

7 Experimental Evaluation

To assess the effectiveness of our approach, we have conducted a number of
experiments which are presented below.

7.1 Experimental settings

Our document collection is the English subset of the ClueWeb09 dataset8
which consists of 500 million documents. This dataset is used by several tracks
of the TREC conference [3]. For semantic tagging, several text processing tools
have been used, including OpenNLP9 (for tokenization and sentence splitting),
the StanfordNLP10(for POS tagging). For classification, six classifiers of differ-
ent types were applied, namely the classic Naïve Bayes, the rule-based (NNge,
DecisionTable), tree-based (J48, RandomForest) and lazy (KStar). These clas-
sifiers are included in the Weka software [9]. As for linking, we have used the
DBpedia11 dataset version 3.7 which contains 3,550,567 triples. Apache Lucene
was employed for the backend indexing. Running KIEV for one type of rela-
tion on a subset of the collection took roughly 20 minutes.

7 http://triplify.org/Challenge/
8 http://lemurproject.org/clueweb09/
9 http://opennlp.apache.org/

10 http://nlp.stanford.edu/
11 http://wiki.dbpedia.org/Downloads37

11

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Q
u

a
lit

y
 i
n

 %

Top-k

Recall
Precision

F-measure

(a) Before Verification

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Q
u

a
lit

y
 i
n

 %

Top-k

Recall
Precision

F-measure

(b) With Classification and Linking

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Q
u

a
lit

y
 i
n

 %

Top-k

Recall
Precision

F-measure

(c) Linking only

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Q
u

a
lit

y
 i
n

 %

Top-k

Recall
Precision

F-measure

(d) Classification only

Fig. 3. Quality Results for the Remakes Dataset

7.2 Quality of Discovery Process

In this experiment, we focus on the movie dataset (remakes). Examples of rela-
tionships of interest include imitation, adaptation and creator. The ground truth
for this dataset was obtained from the IMDb12 movie database. This ground
truth contained 545 entries out of the total 1052 remake pairs. For the remain-
ing 507 we could not find suitable documents in our collection. The reason for
this is twofold. First, a number of movies were in non-English language. Sec-
ond, a significant number of movies were created before the Information Age,
i.e., those produced earlier than 1970s. Additionally, some examples were only
mentioned in a few documents.

Figure 3 demonstrates the results of our experiments with or without the
evidence-based verifications. The quality is presented in terms of well-known
information retrieval measures - recall, precision and F-measure. Extracted ex-
amples are ranked and thus presented by top-k. In our context, the recall (at
top-k) is the fraction of extracted correct examples (at top-k) out of the total
number of correct examples (at top-k), while the precision (at top-k) is the num-
ber of extracted correct examples (at top-k) out of the total number of extracted
examples (at top-k). F-measure is the harmonic mean of precision and recall.
12 http://imdb.com

12

We first notice that before the verification process, the precision score is quite
low (≈39%) at top-1. This is because the discovery process extracts quite a lot
of incorrect examples (false positives). As we increase the top-k, the recall also
increases and eventually peaks at 87% at top-10. This trend illustrates that our
approach achieves fairly high recall value but at the expense of precision. We
tackle this issue with our verification techniques, i.e., classification and linking.
To show the benefit of both verification steps, the individual results of these
steps are depicted in Figure 3(c) and 3(d). The recall value for both classifica-
tion only and linking only is very similar to the values before verification, thus
confirming that the individual verification do not discard many correct relation-
ships. And the precision values for both steps, which are lower than the precision
score after verification at any iteration, indicate that classification and linking
do not discard the same incorrect examples. Thus, they enable a higher precision
when they are combined.

Figure 3(b) illustrates that the verification process is effective to discard
incorrect examples (precision score reaching ≈85% at top-1). However, a few
correct relations were also discarded (a ≈6% decrease of recall at top-1), mainly
due to the missing of a link to LOD of one of the entities. Furthermore, this
phenomenon involves changes in the ranking of the extracted examples. Correct
relationships can be promoted to a higher top, thus increasing the recall value
of the highest top (e.g., at top-5). Finally, the benefit of the verification process
clearly appears at top-10, since the plots have a close recall value (≈87%) but
the verification discarded half of the incorrect examples (50% precision).

7.3 Impact of the Training Data

The example discovery process feeds the classifier with new training data for
the subsequent iteration. In this experiment, we have studied the impact of
the selection of this training data by comparing the two strategies described in
Section 4.

Frequency based strategy. The frequency based strategy accounts for the
frequency of a given example being discovered in all iterations. Initially, the user
provides a set of 20 training examples (5 per relation type). If a given example is
discovered repeatedly on each iteration, the intuition behind this strategy is that
this example is most likely valuable and is promoted as a training example in
the next iteration. Figure 4 illustrates the impact of the training data at the i-th
iteration. On the y axis, we have the number of training examples that is used
by our classifiers. On the right y2 axis, we have the harmonic mean F-measure
obtained by the best performing classifier at the i-th iteration. The best perform-
ing classifier is the one with the highest F-measure during the classification with
10-fold cross-validation against the training data. Note that from one iteration
to the other, the best performing classifier may be different because the set of
training data evolves. For example, KStar was selected as the best classifier for
the first iteration, but J48 performed better in the second iteration.

13

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

1 2 3 4 5

 0

 20

 40

 60

 80

 100

N
u
m

b
e
r

o
f
tr

a
in

in
g
 e

x
a
m

p
le

s

F
-m

e
a
s
u
re

Number of iterations

correct examples
incorrect examples

f-measure

Fig. 4. Impact of Training Examples with Frequency based Strategy

On the plot, 85 examples discovered during the first iteration are selected
for training for the second iteration. However, 20 of them are incorrect, i.e.
false positives (shown as a black bar). Both the number of correct and incorrect
examples increases as we move towards the 5-th iteration, eventually reaching
312 and 165 examples respectively for correct and incorrect examples. The high
number of examples can be explained as follows. The frequency based strategy
promotes as training data examples which appear at least 50% of the time in
the previous iterations. Thus the number of added examples can potentially
grow high. Yet, the F-measure obtained on the remakes dataset does not suffer
much from the presence of incorrect examples (stable around 89% after the 3-rd
iteration).

Linking based strategy. The linking based strategy provides a harder con-
straint than the frequency based strategy when selecting the training data. In-
deed, the candidate examples have to be verified both by the classification and
by the linking process. Let us study the impact of this strategy over the quality
of results by analyzing Figure 5. It presents the F-measure value achieved by the
best generated classifier and the evolution of the number of training examples
for five iterations.

The first remark about this plot deals with the F-measure scores, which are
higher than those of the frequency based strategy from iterations 1 to 5. An-
other interesting phenomenon with this strategy is that the number of examples
selected as training data (y axis) is lower than the one of the frequency based
strategy. Indeed, the linking based strategy requires that both entities of an ex-
ample are linked to LOD. Thus, this number is dramatically reduced, i.e., 200
in linking based strategy versus 312 in the frequency-based strategy at the fifth
iteration. Finally, the number of incorrect examples is much lower in the linking
based strategy too.

14

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 3 4 5

 0

 20

 40

 60

 80

 100

N
u
m

b
e
r

o
f
tr

a
in

in
g
 e

x
a
m

p
le

s

F
-m

e
a
s
u
re

Number of iterations

correct examples
incorrect examples

f-measure

Fig. 5. Impact of Training Examples with Linking based Strategy

These remarks about the total number of correct examples together with the
higher F-measure value are clear indicators that the linking based strategy is
quality oriented while the frequency based strategy is performance oriented (sim-
ple and fast computation). The latter strategy is more appropriate for quickly
generating training examples.

7.4 Comparative Evaluation

Finally, the evaluation of KIEV would not be complete without a comparison
with similar knowledge extraction systems. Two systems, Prospera and
NELL, are publicly available along with their dataset about sports. The results
of these systems over the sport dataset are reported in [6, 14]. To be fair in this

 0

 20

 40

 60

 80

 100

A
th

le
te

P
la

y
sF

o
rT

ea
m

T
ea

m
W

o
n
T

ro
p
h

y

C
o
ac

h
C

o
ac

h
es

T
ea

m

A
th

le
te

W
o
n
T

ro
p
h
y

A
th

le
te

P
la

y
sI

n
L

ea
g
u
e

C
o
ac

h
C

o
ac

h
es

In
L

ea
g
u
e

T
ea

m
P

la
y
sA

g
ai

n
st

T
ea

m

T
ea

m
P

la
y
sI

n
L

ea
g
u
e

T
ea

m
M

at
e

E
st

im
at

ed
 P

re
ci

si
o

n

NELL

Prospera

KIEV

Fig. 6. Comparison to NELL and Prospera

15

evaluation, we have used the same set of training examples, and we also validated
1000 random types of relationship, as explained in the experiments reported
in [6, 14]. This means that similarly to Prospera and NELL, our precision is an
estimation, due to the amount of relationships to be validated.

Figure 6 summarizes the comparison between the three systems in terms
of estimated precision. We notice that the average precision of the three sys-
tems is the same (around 0.91). However, the total number of facts discovered
by KIEV (71, 921) is 36 times higher than NELL (2, 112) and 1.3 times higher
than Prospera (57, 070). As a consequence, KIEV outperforms both baselines.
Prospera provides slightly better quality results than our approach on the Ath-
letePlaysForTeam relationship. However, several factors have an influence on the
precision results between Prospera, NELL and KIEV. First, Prospera is able to
use seeds and counter seeds while we only rely on positive examples. On the
other side, Prospera includes a rule-based reasoner combined with the YAGO
ontology and KIEV mainly uses the LOD cloud for verification purposes. Yet,
the combination of POS-tagged patterns and NER techniques supported by the
two verification steps achieves outstanding precision values.

8 Conclusion

We have presented our novel approach KIEV for populating a knowledge
base with entities and relationships. Our approach enables the analysis of a
large amount of documents to extract examples (of entities) with their expected
type of relationships after each iteration. A verification step ensures an accept-
able quality for these extracted relationships by discarding irrelevant examples
(classification) and by discovering the corresponding LOD entities (entity link-
ing). Experiments performed on different datasets confirm the significant benefit
of the verification step, thus enabling our approach to run continuously and to
use new examples as training data to strengthen both the produced classifier
and consequently the verification process.

The outcome of this work provides several interesting perspectives. First, we
plan to run more experiments to analyze the impact of parameters (e.g.,
selection of the training data, number of iterations on the long term). We could
associate a confidence score (based on provenance, number of patterns, num-
ber of occurrences, etc.) to each discovered relationship to rank them and help
discarding the incorrect ones. Another objective is to study the architecture
and implementation of the knowledge base in terms of infrastructure and
support for RESTful and SPARQL queries. When our knowledge base will be
publicly available, we plan to integrate user feedback to address the poten-
tially contradictory cases between the two verification steps (classification and
linking). Then, an extension could be proposed to discover any type of rela-
tionship, from an ontology for instance, by automatically defining the features
and the training examples.

16

References

1. E. Agichtein and L. Gravano. Snowball: Extracting Relations from Large Plain-
Text Collections. In Proceedings of ACM DL, pages 85–94, 2000.

2. S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Aumueller. Triplify: light-
weight linked data publication from relational databases. In Proceedings of WWW,
pages 621–630, 2009.

3. K. Balog, P. Serdyukov, and A. P. de Vries. Overview of the TREC 2011 entity
track. In Proceedings of TREC 2011. NIST, 2012.

4. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Inter-
national Journal of Semantic Web and Information Systems, 5(3):1–22, 2009.

5. S. Brin. Extracting patterns and relations from the world wide web. In Proceedings
of WebDB, pages 172–183, 1998.

6. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka Jr., and T. M. Mitchell.
Toward an architecture for never-ending language learning. In Proceedings of
AAAI, pages 1306–1313, 2010.

7. G. V. Cormack, M. D. Smucker, and C. L. A. Clarke. Efficient and effective spam
filtering and re-ranking for large web datasets. Inf. Retr., 14(5):441–465, 2011.

8. O. Etzioni, A. Fader, J. Christensen, S. Soderland, and Mausam. Open Information
Extraction: The Second Generation. In Proceedings of IJCAI, pages 3–10, 2011.

9. S. R. Garner. WEKA: The Waikato Environment for Knowledge Analysis. In
Proceedings of the New Zealand Computer Science Research Students Conference,
pages 57–64, 1995.

10. O. Hassanzadeh and M. P. Consens. Linked Movie Data Base. In Proceedings of
LDOW, 2009.

11. Q. Liu, K. Xu, L. Zhang, H. Wang, Y. Yu, and Y. Pan. Catriple: Extracting triples
from wikipedia categories. In Proceedings of ASWC, pages 330–344, 2008.

12. D. Milne and I. H. Witten. Learning to link with wikipedia. In Proceedings of
CIKM, pages 509–518, 2008.

13. T. Mitchell. Machine Learning. McGraw-Hill Education (ISE Editions), Oct. 1997.
14. N. Nakashole, M. Theobald, and G. Weikum. Scalable knowledge harvesting with

high precision and high recall. In Proceedings of WSDM, pages 227–236, 2011.
15. R. Parundekar, C. A. Knoblock, and J. L. Ambite. Linking and building ontologies

of linked data. In International Semantic Web Conference, pages 598–614, 2010.
16. P. Resnik. Semantic similarity in a taxonomy: An information-based measure and

its application to problems of ambiguity in natural language. Journal of Artificial
Intelligence Research (JAIR), 11:95–130, 1999.

17. H. Rode, P. Serdyukov, and D. Hiemstra. Combining document- and paragraph-
based entity ranking. In Proceedings of ACM SIGIR, pages 851–852, 2008.

18. F. Suchanek, M. Sozio, and G. Weikum. SOFIE: a self-organizing framework for
information extraction. In Proceedings of WWW, pages 631–640, 2009.

19. N. Takhirov, F. Duchateau, and T. Aalberg. Linking FRBR Entities to LOD
through Semantic Matching. In Proceedings of TPDL, pages 284–295, 2011.

20. The International Federation of Library Associations and Institutions. Functional
requirements for bibliographic records. In UBCIM Publications - New Series, vol-
ume 19, 1998.

21. A.-M. Vercoustre, J. A. Thom, and J. Pehcevski. Entity ranking in Wikipedia. In
Proceedings of ACM SAC, pages 1101–1106, 2008.

22. G. Weikum and M. Theobald. From information to knowledge: harvesting entities
and relationships from web sources. In Proceedings of PODS, pages 65–76, 2010.

