
Blank Node Matching and
RDF/S Comparison Functions

Yannis Tzitzikas, Christina Lantzaki, and Dimitris Zeginis⋆

Computer Science Department, University of Crete,
Institute of Computer Science, FORTH-ICS, GREECE

{tzitzik,kristi,zeginis}@ics.forth.gr

Abstract. In RDF, a blank node (or anonymous resource or bnode) is
a node in an RDF graph which is not identified by a URI and is not
a literal. Several RDF/S Knowledge Bases (KBs) rely heavily on blank
nodes as they are convenient for representing complex attributes or re-
sources whose identity is unknown but their attributes (either literals
or associations with other resources) are known. In this paper we show
how we can exploit blank nodes anonymity in order to reduce the delta
(diff) size when comparing such KBs. The main idea of the proposed
method is to build a mapping between the bnodes of the compared KBs
for reducing the delta size. We prove that finding the optimal mapping
is NP-Hard in the general case, and polynomial in case there are not
directly connected bnodes. Subsequently we present various polynomial
algorithms returning approximate solutions for the general case.
For making the application of our method feasible also to large KBs we
present a signature-based mapping algorithm with n logn complexity. Fi-
nally, we report experimental results over real and synthetic datasets that
demonstrate significant reductions in the sizes of the computed deltas.
For the proposed algorithms we also provide comparative results regard-
ing delta reduction, equivalence detection and time efficiency.

1 Introduction

The ability to compute the differences that exist between two RDF/S Knowl-
edge Bases (KBs) is an important step to cope with the evolving nature of the
Semantic Web (SW). In particular, RDF/S Deltas can be employed to aid hu-
mans understand the evolution of knowledge, and to reduce the amount of data
that need to be exchanged and managed over the network in order to build SW
synchronization [19, 1], versioning [7, 8, 1, 4, 21] and replication [17] services. A
rather peculiar but quite flexible feature of RDF is that it allows the representa-
tion of unnamed nodes, else called blank nodes (for short bnodes), a feature that
is convenient for representing complex attributes (e.g. an attribute address as
shown in Figure 1) without having to name explicitly the auxiliary node that is
used for connecting together the values that constitute the complex value (i.e.

⋆ Current affiliation: Information Systems Lab, University of Macedonia, Thessaloniki,
Greece, zeginis@uom.gr

2 Yannis Tzitzikas, Christina Lantzaki, and Dimitris Zeginis

the particular street, number and postal code values). A recent paper [10]
that surveys the treatment of bnodes in RDF data, proves that blank nodes is
an inevitable reality. Just indicatively, and according to their results, the data
fetched from the “hi5.com” domain consist of 87.5% of blank nodes, while those
from the “opencalais.com” domain, which is part of LOD (Linked Open Data)
cloud, has 44.9% bnodes. The authors also state that the inability to match bn-
odes increases the delta size and does not assist in detecting the changes between
subsequent versions of a KB.

Fig. 1. Examples of blank nodes

Previous works on comparing RDF KBs have not elaborated on this issue
thoroughly. There are works (e.g. [21, 22]) proposing differential functions that
yield reduced in size deltas (in certain cases) but treat bnodes as named nodes.
Other works and systems (specifically Jena [3]) focus only on deciding whether
two KBs that contain bnodes are equivalent or not, and do not offer any delta
size saving for the case where the involved KBs are not equivalent. In brief, and
to the best of our knowledge, there is not any work that attempts to establish
a bnode mapping for reducing the delta size for the case of non equivalent KBs.
Note that finding such a mapping can be considered as a preprocessing step, a
task that is carried out before a differential function (like those described in [17,
20, 16, 15, 8, 21]) is applied.

We prove that finding the optimal mapping is NP-Hard in the general case
and polynomial if there are not directly connected bnodes. Subsequently we
present various polynomial algorithms returning approximate solutions for the
general case. For making the application of this method feasible also to large
KBs one of these algorithms has n log n complexity.

The experimental results over real and synthetic datasets showed that our
method significantly reduces the sizes of the computed deltas, while the time re-
quired is affordable (just indicatively the n log n algorithm requires a few seconds
for KBs with up to 150,000 bnodes). For the proposed algorithms we also pro-
vide comparative results regarding time efficiency and their potential for delta
reduction and equivalence detection.

The rest of this paper is organized as follows. Section 2 discusses RDF KBs
with bnodes and the equivalence of such KBs. Section 3 elaborates on the prob-
lem of finding the optimal mapping. Section 4 proposes bnode matching algo-
rithms and Section 5 reports experimental results. Section 6 discusses the appli-
cability of the method at the presence of inference rules and various semantics,
Section 7 discusses related work, and finally, Section 8 concludes the paper and
identifies issues for further research.

Blank Node Matching and RDF/S Comparison Functions 3

Software and datasets are available to download and use from
http://www.ics.forth.gr/isl/BNodeDelta.

2 RDF KBs with Blank Nodes

Consider there is an infinite set U (RDF URI references), an infinite set B (blank
nodes) and an infinite set L (literals). A triple (s, p, o) ∈ (U∪B)×U×(U∪B∪L)
is called an RDF triple (s is called the subject, p the predicate and o the object).
An RDF Knowledge Base (KB) K, or equivalently an RDF graph G, is a set of
RDF triples.

For an RDF Graph G1 we shall use U1, B1, L1 to denote the URIs, bnodes
and literals that appear in the triples of G1 respectively. The nodes of G1 are
the values that appear as subjects or objects in the triples of G1.

The equivalence of RDF graphs that contain blank nodes is defined in [9] as:

Def. 1 (Equivalence of RDF Graphs that contain Bnodes)
Two RDF graphs G1 and G2 are equivalent if there is a bijection1 M between
the sets of nodes of the two graphs (N1 and N2), such that:
– M(uri) = uri for each uri ∈ U1 ∩N1

– M(lit) = lit for each lit ∈ L1

– M maps bnodes to bnodes (i.e. for each b ∈ B1 it holds M(b) ∈ B2)
– The triple (s, p, o) is in G1 if and only if the triple (M(s), p,M(o)) is in G2.

⋄

It follows that if two graphs are equivalent then it certainly holds U1 = U2,
L1 = L2 and |B1| = |B2|.

Let us now relate the problem of equivalence with edit distances.

Def. 2 (Edit Distance over Nodes given a Bijection)
Let o1 and o2 be two nodes of G1 and G2, and suppose a bijection between the
nodes of these graphs, i.e. a function h : N1 → N2 (obviously |N1| = |N2|). We
define the edit distance between o1 and o2 over h, denoted by disth(o1, o2), as
the number of additions or deletions of triples which are required for making the
“direct neighborhoods” of o1 and o2 the same (considering h-mapped nodes the
same). Formally, disth(o1, o2) =
|{(o1, p, a) ∈ G1 | (o2, p, h(a)) ̸∈ G2}|+ |{(a, p, o1) ∈ G1 | (h(a), p, o2) ̸∈ G2}|+
|{(o2, p, a) ∈ G2 | (o1, p, h−1(a)) ̸∈ G1}|+ |{(a, p, o2) ∈ G2 | (h−1(a), p, o1) ̸∈ G1}| ⋄

Now recall that if G1 is equivalent to G2 then there exists a bijection h such
that (a, p, b) ∈ G1 ⇔ (h(a), p, h(b)) ∈ G2. We will denote this by G1 ≡h G2. It
follows that:

Theorem 1 (RDF Graph Equivalence and Edit Distance).
G1 ≡h G2 ⇔ disth(o, h(o)) = 0 for each o ∈ N1.

Obviously the above theorem is useful for the case where the bijection h
respects the constraints of Def. 1 (i.e. maps named elements to named elements,
and anonymous elements to anonymous).

1 A function that is both one-to-one (injective) and onto (surjective).

4 Yannis Tzitzikas, Christina Lantzaki, and Dimitris Zeginis

3 On Finding the Optimal Bnode Mapping

Let us now focus on the case where two KBs, K1 and K2, are not necessarily
equivalent and do contain bnodes. We would like to find a mapping over their
bnodes that reduces the size (i.e. the number of change operations) of their delta
and allows detecting whether K1 is equivalent to K2. Furthermore we want an
efficient (tractable at least) method for finding such a mapping.

3.1 RDF/S Differential Functions.

[21, 22] described and analyzed various differential functions for comparing RDF/S
knowledge bases. Each differential function returns a set of primitive change
operations, i.e. Add(t) and Del(t) where t is an RDF triple. For the needs
of this paper, it is enough to use the differential function ∆e which is de-
fined as follows (“−” denotes set difference): ∆e(K1 → K2) = {Add(t) | t ∈
K2 −K1} ∪ {Del(t) | t ∈ K1 −K2}. We call its output delta.

3.2 Bnode Name Tuning and Delta Reduction Size

The basic idea for reducing the delta is the following: if we match a bnode b1
(of B1) to a bnode b2 (of B2), through a bijection M , then these bnodes can
be considered as equal at the computation of delta. For example, if K1 contains
a triple (b1, name, Joe) and K2 contains a triple (b2, name, Joe) and we match
b1 to b2, then these two triples will be considered equal and thus no difference
will be reported. However we should note that in the context of versioning or
synchronization services the change operations derived by a differential function
should not be used as they are. For example, consider K1 = {(b1, name, Joe)}
and K2 = {(b2, name, Joe), (b2, lives, UK)} and suppose that we match again
b1 to b2. In this case a mapping-aware comparison function will return the delta
{Add((b2, lives, UK))}. If we want to apply it on K1 then we have to replace b2
by b1, i.e we should apply on K1 the operation Add((b1, lives, UK)), and in this
way, we will obtain K ′

1 = {(b1, name, Joe), (b1, lives, UK)} which is equivalent
to K2. We call this step Bnode Name Tuning, and it actually replaces (renames)
in the delta the local names of the bnodes ofB2 by the local names of the matched
bnodes in B1. In this way the delta does not need any rename operation (i.e.
rename(b1, b2)) and hence not any particular execution order.

Delta reduction size Bnode matching cannot increase delta size. Without
bnode matching any pair of bnodes from different KBs is considered different,
and thus all triples to which they participate will be different and reported as
change operations in the delta. On the other hand, if two bnodes are matched
then the delta size is reduced if they participate to triples with the same predicate
and the same other node (i.e. the same subject or object). In the case where all
predicates/nodes of these triples are different, the delta size that will be reported
is what will be reported without bnode matching.

Blank Node Matching and RDF/S Comparison Functions 5

3.3 Bnode Matching as an Optimization Problem

Here we formulate the problem of finding a mapping between the bnodes of two
KBs as an optimization problem. Let n1 = |B1|, n2 = |B2| and n = min(n1, n2).
We have to match n elements of B1 with n elements of B2, i.e. our objective is
to find the unknown part of the bijection M . To be more precise, M a priori
contains the mappings of all the URIs and literals of the KBs (URIs and literals
are mapped as an identity function as in Def. 1), and its unknown part concerns
B1 and B2. Suppose that n = n1 < n2. Let J denote the set of all possible
bijections between B1 and a subset of B2 that comprises n elements. The number
of all possible bijections (i.e. |J |) is n2 ∗ (n2 − 1) ∗ ... ∗ (n2 −n1 +1), i.e. the first
element of B1 can be matched with n2 elements of B2, the second with n2 − 1
elements, and so on. Consequently, the set of candidate solutions is exponential
in size. Since our objective is to find a bijection M ∈ J that reduces the delta
size (as regards the “unamed” parts of the KBs), we define the cost of a bijection
M as follows:

Cost(M) =
∑

b1∈B1

distM (b1,M(b1)) (1)

Def. 3 (The bijection yielding the less delta size) The best solution (or
solutions) is defined as the bijection with the minimum cost, i.e. we define:

Msol = argM min
M∈J

(Cost(M)) ⋄

The notation argM returns the M in J that gives the minimum cost.

Theorem 2 (Equivalence and Mapping Cost).
If G1 ≡Msol

G2 (according to Def. 1) then Cost(Msol) = 0.

The proof follows easily from the definitions. It is also clear that the inverse of
Th. 2 does not hold (i.e. Cost(Msol) = 0 ̸⇒ G1 ≡Msol

G2) because the cost is
based on the distance between the direct neighborhoods of the blank nodes only,
and not between the named parts of the graphs.

From the algorithmic perspective, one naive approach for finding the best
solution (i.e. Msol) would be to examine the set of all possible bijections. That
would require at least n! examinations (true if n1 = n2 = n, while if n1 < n2

then their number is higher than n!). However, the problem is intractable in
general:

Theorem 3. Finding the optimal bijection (according to Def. 3) is NP-Hard.
Proof:
We will show that subgraph-isomorphism (which is NP-complete problem) can be re-
duced to the problem of finding the optimal bijection (meaning that our problem is at
least as hard as subgraph-isomorphism). Let us make the hypothesis that we can find
the optimal bijection in polynomial time. We will prove that if that hypothesis were
true, then we would be able to solve the subgraph isomorphism in polynomial time.
The subgraph isomorphism decision problem is stated as: given two plain graphs G1

and G2 decide whether G1 is isomorphic to a subgraph of G2. Let G1 = (N1, R1) and

6 Yannis Tzitzikas, Christina Lantzaki, and Dimitris Zeginis

G2 = (N2, R2). We can consider these graphs as two RDF graphs such that: all of their
nodes are bnodes and all property edges have the same label. Assume that |N1| ≤ |N2|
and let n = min(|N1|, |N2|). If we can find in polynomial time whether there is a bi-
jection between the n nodes of G1 and n nodes of G2 such that Cost(Msol) = 0, then
this means that we have found whether G1 is isomorphic to a subgraph of G2. Specifi-
cally, to decide whether there is a subgraph isomorphism, (a) we compute the optimal
bijection, say Msol, and (b) we compute its cost. If the cost returned by step (b) is 0
then we return YES, i.e. that there is a subgraph isomorphism. Otherwise we return
NO (i.e. there is no subgraph isomorphism). Note that step (a) is polynomial by hy-
pothesis, while step (b) relies on Def. 2 and its cost is again polynomial. Regarding the
latter, note that Msol contains n pairs, and to compute distM (b1, b2) for each (b1, b2)
pair of M , we consider only the direct neighborhoods of the two nodes in the two graphs
(for G2 we have to consider only those that connect nodes that participate in Msol)

2.
It follows that its computational cost is analogous to the number of edges of the graphs,
and thus polynomial. Therefore given a bijection Msol, to compute Cost(Msol) requires
polynomial time. Also note that Th. 1 holds also for plain graphs assuming a distance
function over not labeled edges. We conclude that if our hypothesis were true, then we
would be able to decide subgraph isomorphism in polynomial time.

We conclude that finding the optimal bijection is NP-Hard.⋄

Below we will show that there are algorithms of polynomial complexity for
a frequently occurring case. For the general case, we will propose algorithms of
polynomial complexity that return an approximate solution.

3.4 Polynomially-solved (and Frequently Occurring) Cases

Consider the KBs in Figure 2 and suppose that we want to compute disth(:
1, : 6) (according to Def. 2). It is not hard to see that this distance depends
on the mappings (by h) of the bnodes that are connected to : 1 and : 6, i.e.
on the mappings of : 3, : 4, : 8 and : 9. However several datasets do not
have directly connected bnodes. For this reason, here we study a variation of
the problem that is appropriate for this case. The key point is that the distance
between two bnodes does not depend on how the rest bnodes are mapped.

This is very important because in this case we can solve the optimization
problem (as defined in Definition 3) using the Hungarian algorithm [12] (for
short AlgHung, an algorithm for solving the assignment problem. Here the ele-
ments (bnodes) of B1 play the role of workers, the elements (bnodes) of B2 play
the role of jobs, and the edit distances of the pairs in B1 × B2 play the role of
the costs. Consider for the moment that |B1| = |B2|. If we compute the edit
distances between all possible n2 pairs, then AlgHung can find the optimal as-
signment at the cost of O(n3) time. This means that finding the optimal solution
costs polynomial time. An extension of AlgHung giving the ability to assign the
problem in rectangular matrices (i.e. when |B1| ̸= |B2|) is already provided in
[2]. We conclude that if there are not directly connected bnodes then the optimal
mapping can be found in polynomial time.

2 Alternatively, if Cost(Msol) ̸= 0 (using the distance as defined in the main paper),
we return YES only if ∆e(G1 → G2) as defined in section 3.1, after bnode name
tuning, contains only triples each containing one bnode in B1 and one not in B1.

Blank Node Matching and RDF/S Comparison Functions 7

Fig. 2. Two KBs with directly connected bnodes

Theorem 4. Finding the optimal bijection (according to Def. 3) is a polynomial
task if there are no directly connected bnodes.⋄

4 Bnode Matching Algorithms

At section 4.1 we present a variation of AlgHung for getting an approximate
solution for the general case, then at Section 4.2 we present a signature-based
algorithm appropriate for larger datasets.

4.1 Hungarian BNode Matching Algorithm

We have already stated that AlgHung can find the optimal mapping in polynomial
time if no directly connected bnodes exist in the compared KBs. For the cases
where there are directly connected bnodes, AlgHung enriched with an assumption
regarding how to treat the connected bnodes at the computation of disth, could
be used for producing an approximate solution. Also in this case the algorithm
will make n1 × n2 distance computations (where n1 = |B1| and n2 = |B2|), and
the complexity of the algorithm will be again O(n3).

Regarding connected bnodes, at the computation of disth, one could either
assume that all of the connected bnodes are different, or all of them are the
same. The first assumption does not require any bijection (h contains only the
identity functions of the URIs and literals). According to Definition 2, the fact
that all the bnodes are different means by extension that the triples in the direct
neighborhoods connecting blank nodes are different too, even in the case where
these triples have the same properties. For instance, applying the Definition
2 between bnodes (: 1, : 6) and (: 1, : 7) of Figure 2, we get that
disth(: 1, : 6) = 4 and disth(: 1, : 7) = 3 respectively. However, bnodes
: 1, : 6 have two outgoing triples with exactly the same properties, while

bnodes : 1, : 7 have only one. We observe that this assumption is not very
good because we would prefer : 1 to be “closer” to : 6 than to : 7.

According to the alternative assumption, when comparing bnodes (: 1, : 6)
in Figure 2, bnode : 3 can be matched either with bnode : 8 or with bnode
: 9, depending on the existence of a common property between them. This

yields disth(: 1, : 6) = 0 since both bnodes have two outgoing triples with

8 Yannis Tzitzikas, Christina Lantzaki, and Dimitris Zeginis

common properties (i.e. (: 1, brother, : 3) is matched with (: 6, brother, : 8)
and (: 1, friend, : 4) is matched with (: 6, friend, : 9)). Regarding : 1 and
: 7, we get disth(: 1, : 7) = 1 because of the deleted triple (: 1, brother, : 3).

It follows that the results of this assumption are better over this example, as
: 1 is “closer” to : 6 than to : 7. In general it is better because it exploits

common properties, and therefore we adopt this assumption in our experiments.

4.2 A Fast (O(n logN)) Signature-based Algorithm

The objective here is to devise a faster mapping algorithm that could be applied
to large KBs, at the cost of probably bigger deltas. We propose a signature-
based mapping algorithm, for short AlgSign, which consists of two phases: the
signature construction and the mapping construction phase. For each bnode b
we produce a string based on the direct neighborhood of b. This string is called
the signature of bnode b. This phase gives us two lists of signatures, one for the
bnodes of each KB. These lists should be considered as bags rather than sets,
as there is a probability that two or more bnodes get the same signature. The
probability depends on the way the signature is built (we discuss this later).

Alg. SignatureMapping
Input: two sets of bnodes B1 and B2,

where |B1| < |B2|
Out: a bij. M between B1 and B2

(1) M = ∅
(2) BS1 = BS2 = emptybag
(3) for each b1 ∈ B1

(4) BS1 = BS1 ∪ {Signature(b1)}
(5) for each b2 ∈ B2

(6) BS2 = BS2 ∪ {Signature(b2)}
(7) sort(BS1)
(8) sort(BS2)

(9) for each bs1 ∈ BS1

(10) bs2 = Lookup(BS2, bs1)
(11) if (bs2 == bs1) // exact match

(12) M = M ∪ {(bn1[bs1], bn2[bs2])}
// bn1[str] returns the b ∈ B1 corresponding to str

(13) BS2.remove(bs2)
(14) BS1.remove(bs1)
(15) for each bs1 ∈ BS1

(16) bs2 = Lookup(BS2, bs1) // closest match

(17) M = M ∪ {(bn1[bs1]), bn2[bs2])}
(18) BS2.remove(bs2)
(19)return M

Fig. 3. Alg. The Signature-based bnode matching algorithm

The mapping phase takes these two bags of strings and compares the elements
of the first bag with those of the second. To make binary search possible, both
bags are sorted lexicographically. In particular, we start from the smaller list,
say BS1, and for each string bs1 in that list we perform a lookup in the second
list BS2 using binary search. If an exact match exists (i.e. we found the string bs1
also in BS2) we produce a mapping, i.e. the pair (bn1[bs1], bn2[bs1]). Since more
than one bnodes may have the same signature we select one. We prefer the order
as provided by the managing software, which in many cases reflects the order
by which bnodes appear in files. As there is a high probability for subsequent
versions to keep the same serialization, using the original order increases the

Blank Node Matching and RDF/S Comparison Functions 9

probability of matches in case of same signatures3. We continue in this way for
all strings of BS1. For each element bs1 of BS1 for which no exact match was
found in BS2 we perform a second lookup over the remainder part of BS2, say
BS′

2, which will produce a mapping based on the closest element of BS′
2 to the

bs1 element. Specifically, we will match bs1 to the element of BS′
2 to which binary

search stopped, i.e. to the lexicographically closer element. Note that we perform
the closest matches after finishing with the exact matches in order to avoid the
situation where an approximate match deters an exact match at a later step.

The complexity of this algorithm is O(n logN) where N = max(n1, n2) and
n = min(n1, n2), assuming that the average graph degree of bnodes (and thus
signature size) does not depend on N . The algorithm is shown in Figure 3 and
relies on an algorithm Signature for producing signatures, and on a algorithm
Lookup as described earlier. As regards the signature construction method we
would like to derive strings that allow matches that will yield small deltas even
if the bnodes do not match exactly. To this end, we should give priority (i.e.
bring to the front part of the string) to the items of the bnode that have lower
probability to be changed from one version to the other.

Fig. 4. Two versions of an address Knowledge Base

Table 1. Signatures on bnodes of K1 and K2 of Fig. 4 according to the given option
Local
Name

Signature

: 1 ChristinahasAddress♢typeAddress♢cityLondon ∗ No14 ∗ streetOxfordStreet
: 3 ChristinahasAddress♢typeAddress♢cityLondon ∗ No14 ∗ streetOxfordStreet
: 2 Y annishasAddress♢typeAddress♢cityNewY ork ∗ No445 ∗ streetBroadway
: 4 Y annishasAddress♢typeAddress♢cityChicago ∗ No132 ∗ streetMichiganAvenue

Consider bnode : 1 of Figure 4 which is involved in the following triples:
Incoming: {(Christina, hasAddress, : 1)}, Outgoing: {(: 1, street, OxfordStreet),

(: 1, No, 14), (: 1, city, London)}, Class Type: {(: 1, type,Address)}. Each of
these triples will be mapped to a substring (e.g. ”ChristinahasAddress” for the
triple (Christina, hasAddress, : 1)). The set Class Type contains the triples
with the rdf:type (“type” in the figure) property of the respective bnode. For
the three different sets of triples (Incoming, Outgoing, Class Type) we are going
to construct three sets of substrings respectively. The substrings inside each set
are sorted lexicographically and separated by a special character, here denoted
by ∗ . The concatenation of these sets of substrings will yield the signature.

3 We do the same in AlgHung in case of ties in costs.

10 Yannis Tzitzikas, Christina Lantzaki, and Dimitris Zeginis

A key point is the order by which the sets are concatenated. One option is to
give a first priority to the set of the incoming triples, a second priority to the
set with type information (i.e. ”typeAddress”), and the last priority to the set
of the outgoing triples. We should also mention that inside the signature the
sets are separated by a special character, here denoted by ♢. Table 1 shows the
signatures of all the bnodes of Figure 4 according to this option. The proposed
ordering of the substrings inside the signature stems from the assumption that
the probability for the outgoing statements to change is higher than the incoming
(e.g. in Figure 4 updating the address of a person is more probable than changing
his/her name). Under this assumption the incoming statements should precede
the outgoing inside the signature. Similarly for the class type of the bnode, it is
not usual to be changed from one version to the other.

We represent the blank nodes which are subjects of incoming statements or
objects of the outgoing statements, by a special character ♣ (i.e. we treat them
as equal, as we did in the 2nd assumption of approximation version of AlgHung).

5 Experimental Evaluation

Real Datasets. We performed experiments for evaluating the potential for
delta reduction, equivalence detection and time efficiency. In our experiments4,
we used two real datasets available in the LOD cloud: the Swedish open cultural
heritage dataset5, and the Italian Museums dataset6, published from LKDI7.
From each one we downloaded two versions with a time difference of one week
or month. A preprocessing was necessary for corrections (e.g. missing URIs for
some classes) and for merging the files. The features of these two datasets are
given in Table 2. In both datasets there are no directly connected bnodes.

Table 2. Features of two real LOD datasets
Swedish Italian

File 1 File 2 File 1 File 2

Date 15/10/11 22/10/11 2/11/11 4/12/11
|Triples| 3,750 3,589 49,897 49,897
|BNodes| 535 509 6,390 6,390
|Triples with bnodes| 77.7% 77.2% 43.85% 43.85%
Total Size 378 KB 365 KB 5.49 MB 5.46 MB

Experiments were conducted with and without bnode mapping. Regarding
mapping we tested: (a) the random, (b) the Hungarian, and (c) the Signature-
based mapping methods. The results are shown in Table 3. The first rows show
the size of the yielded deltas and the last rows the time required for loading
the bnodes (BLoad), constructing signatures (SC), bnode maping (BM), delta

4 Using Sesame RDF/S Repository (main memory), using a PC with Intel Core i3 at
2.2 Ghz, 3.8 GB Ram, running Ubuntu 11.10.

5 http://thedatahub.org/dataset/swedish-open-cultural-heritage used from
http://kringla.nu/kringla/ for providing information on cultural data of Sweden.

6 http://thedatahub.org/dataset/museums-in-italy
7 http://www.linkedopendata.it/

Blank Node Matching and RDF/S Comparison Functions 11

computation (Diff), bnode name tuning (Tuning Time), and the total time. We
observe that the algorithms provide a delta of 12.7 to 7, 294 times smaller than
without bnode mapping. AlgHung yields an equal (for the Italian) or smaller
(0.34 times smaller for the Swedish) delta than AlgSign, but it requires more
time (from 15 to 624 times).

Table 3. Experimental results over real datasets
Swedish Italian

without BM with BM (bnode matching) without BM with BM (bnode matching)
RandomAlgHungAlgSign RandomAlgHungAlgSign

|Added| 2,805 2,726 75 127 21,885 19,762 3 3
|Deleted| 2,966 2,887 236 288 21,885 19,762 3 3
|∆e| 5,771 5,613 311 419 43,770 39,524 6 6

BLoad Time(ms) - 631 630 634 - 428 423 421
SC Time(ms) - - - 210 - - - 840
BM Time(ms) - 1.3 5,391 130 - 4.9 576,592 82.5
Diff Time(ms) 55 64 30 47 145 166 169 163
Tuning Time(ms) - 15 0.2 0.5 - 3,332 9.4 9.5
Total Time(ms) 57 715 5,931 1,024 147 3,935 577,197 1,521

Synthetic Datasets. Although semantic data generators already exist in the
bibliography, none of them deals with the blank node connectivity issues. There-
fore we designed and developed a synthetic generator over the UBA (Univ-Bench
Artificial data generator) [5] that can generate datasets with the desired bnode
structures. Each dataset corresponds to an RDF graph G. Let Nodes be the set
of all nodes in the graph, B be the set of bnodes (B ⊆ Nodes), and conn(o)
be the nodes of G that are directly connected with a node o ∈ Nodes. We de-

fine bdensity as bdensity = avgb∈B
|conn(b)∩B|
|conn(b)| . Note that if there are no directly

connected bnodes then bdensity = 0. The extended generator can create datasets
with the desired bdensity and the desired maximum length of paths that consist
of edges that connect bnodes (we denote by blen their average). Using the syn-
thetic generator, we created a sequence of 9 pairs of KBs (each pair has two
subsequent versions of a KB). For instance, the first KB is K0 and its pair is
K ′

0. Each time we compare the subsequent versions of a pair with respect to
mapping time and yielded delta size. From now on we express the delta size as a

percentage of the number of triples of the KB, i.e. as |∆e(K,K′)|
|K|+|K′|

2

. Table 4 shows

the blank node properties of each pair of KBs, its optimal delta size over its
subsequent version (known by construction) and its variation over the next pair
of KBs (we call b Neighborhood every subgraph having as nodes only bnodes,
and we call b named triple every triple that contains one bnode). With Da we
denote the average number of direct edges of the bnodes (i.e. average number of
triples to which a bnode participates).

Figure 5(left) gives the delta reduction potential of each algorithm in loga-
rithmic scale. Without bnode mapping the delta size ranges from 95% (for the
second pair of KBs) to 143% (for the ninth pair of KBs). Instead for AlgHung it
ranges from 0.47% to 10.67% and for AlgSign it ranges from 1% to 11.5%. Notice
that AlgSign does not reduce the delta to the optimal for any pair of datasets,

12 Yannis Tzitzikas, Christina Lantzaki, and Dimitris Zeginis

Table 4. Blank node Features of the synthetic dataset
K |triples| |B| Da bdensity blen Optimal

delta
size

Variation

K0a 5,846 240 13.4 0 0 1% No connected blank nodes
K1a 5,025 240 10.5 0.1 1 0.5% b Neighborhoods of 2 bnodes, reduced b named

triples
K2a 2,381 240 7 0.15 1 1.5% Reduced b named triples
K3a 1,628 240 5 0.2 1 1.5% Reduced b named triples
K4a 1,636 240 5 0.2 1.15 1% b Neighborhoods of up to 8 bnodes
K5a 1,399 240 4 0.25 1.15 1.7% Reduced b named triples
K6a 919 240 3 0.32 1.15 3.2% b Neighborhoods of up to 15 bnodes, reduced

b named triples
K7a 909 240 3.25 0.4 1.35 2.7% Connect b Neighborhoods, reduced b named triples
K8a 1,001 240 3.94 0.5 21.5 2.5% Connect b Neighborhoods

while AlgHung achieves the optimal delta for most of the pairs.
Figure 5 (right) shows the delta reduction potential for the same pairs with the
difference that the two bnode lists are not scanned in the original order (as in
the left figure), but the second list is reversed. We notice that as the areas of
directly connected bnodes become bigger (after the sixth pair of datasets), we
get different (here higher) deltas. In such areas the direct neighborhoods lose
their discrimination ability and thus the delta reduction potential becomes more
unstable, increasing the probability to get a bigger delta.

Fig. 5. Delta Reduction over the synthetic datasets

If we use the optimal delta as baseline, and compute the percentage
|∆x|−|∆opt|

|∆opt| ,

in the first diagram this percentage for AlgHung falls in [0, 2.88], while the
AlgSign’s percentage falls in [0.4,3.2] (in the second diagram they fall in [0,8]
and [0.4,8] resp.).

Figure 6 (left) shows the mapping times of each algorithm in logarithmic
scale. AlgSign gives two orders of magnitude lower mapping times.

Equivalences. Regarding equivalent KBs, if there are no directly connected
bnodes then AlgHung detects them at polynomial time (recall Th. 4). To investi-
gate what happens if there are directly connected bnodes we compared the pairs
(Kia,Kia) for i=0 to 8 of the synthetic KBs. In case of similarly ordered bnode

Blank Node Matching and RDF/S Comparison Functions 13

Fig. 6. Mapping times over the synthetic datasets

lists both AlgHung and AlgSign detected equivalences for all the KBs, while for
reverse scanned bnodes lists they detected 5 of the 9 equivalences. They did not
detect equivalences for the KBs with bdensity ≥ 0.25.

Bigger Datasets. To investigate the efficiency of AlgSign in bigger datasets, we
created 7 pairs of KBs: the first pair contains 23,827 triples and 2,400 bnodes,
the second pair has the double number of triples and bnodes, and so on, until
reaching the last pair containing 153,600 bnodes. From Fig. 6 (right) we can see
that the mapping time for AlgSign was only 10.5 seconds for the seventh pair of
KBs (153,600 bnodes). AlgHung could not be applied even to the third pair of
KBs due to its high (quadratic) requirements in main memory space.
The results are summarized in the concluding section.

Measuring the approximation.
The upper bound of the reduction of the delta size that can be achieved

with bnode matching is the min number of bnodes of the two KBs multiplied
by their average degree. Experimentally we have investigated whether bdensity
(which is zero if there are no directly connected bnodes, and equal to 1 if all
nodes are bnodes as in the proof of Th. 3), is related with the deviation from

the optimal delta dx =
|∆x|−|∆opt|
|∆opt|+1 . Results over equivalent and non-equivalent

KBs are shown at Figure 7. Both algorithms give a much smaller deviation from
optimal than without bnode matching (its dx ranges [47,114]). We also observe
that keeping the original order of the bnodes is beneficial for both algorithms.
For the non equivalent KBs the AlgHung gives always equal or (mostly) smaller
delta than the AlgSign, while for the equivalent both algorithms give exactly the
same deviation.

6 Discussing Semantics and Inference Rules

Apart from the explicitly specified triples of a KB, other triples can be inferred
based on the RDF/S semantics [6], or other custom inference rules. In some
cases one may want to decide whether two KBs are equivalent or to compute
their delta with respect to a particular set of rules. In such scenarios, equivalence
can be based again on the Def. 1 and the edit distance over nodes on the Def

14 Yannis Tzitzikas, Christina Lantzaki, and Dimitris Zeginis

Fig. 7. dx over non equivalent (left) and equivalent (right) KBs

2 with the only difference that the graphs should be completed according to the
inferred triples. It follows that if the semantics is based on a set of inference
rules yielding a finite closure, then the graph is finite and thus our method
can be applied. Some semantics offering finite closures are RDF/S semantics,
Minimal RDFS semantics [11], ter Horst’s pD* semantics and OWL 2 RL, or
even application-specific like [18].

It is worth mentioning, that the optimal bnode mapping over the complete
graphs may be different from the optimal mapping when considering the explicit
graphs. In the example of Figure 8, where fat arrows denote rdfs:subClassOf re-
lationships and dotted arrows rdf:type relationships, the bijection with the min-
imum cost over the explicit graphs (left) is {(:1, :4),(:2, :3)}, while at the com-
pleted graphs (right) the bijection with the minimum cost is {(:1, :3),(:2, :4)}

Furthermore, for checking equivalence (at the presence of bnodes) or com-
puting deltas, one could use the reduced graphs in case they are unique (note
that the reduction of a Ka, is the smallest in size Kb that is equivalent to Ka,
i.e. Ka and Kb have the same closure).

Fig. 8. Comparing the explicit versus the complete graphs of two KBs

7 Related Work

Jena [3] provides a method for deciding whether two KBs that contain bnodes
are equivalent (assuming Def. 1) and the adopted algorithm is GI-Complete.
PromptDiff [16] and Ontoview [8] employ heuristic matchers to decide whether
two bnodes from different KBs match or not, while CWM [1] is able to match two
blank nodes only if they have functional term labels. Semversion [20] creates and
assigns unique identifiers to bnodes so that to be able to identify the matching

Blank Node Matching and RDF/S Comparison Functions 15

bnodes across versions. However, this is possible only if all versions have been
derived from the same system. RDFSync [19] aims at fast synchronization, i.e.
at reducing the parts of the KBs that have to be compared, and no effort is
dedicated for finding a bnode mapping for reducing the delta size. [13] introduced
a blank node mapping with O(n2) complexity aiming at merging sets of RDF
triples (RDF molecules). However, this mapping presupposes that bnodes are
parts of uniquely identified triples. This mapping method is not applicable in
the general case and cannot be used for delta reduction. To the best of our
knowledge our work is the first one that attempts to find a bnode mapping that
reduces the size of deltas between KBs (that are not equivalent). Although there
are several works for constructing RDF/S mappings (e.g. see [14]), they are not
directly related since they map the named entities of the two KBs, and thus they
take into account lexical similarities, something that is not possible with bnodes.

8 Concluding Remarks

In this paper we showed how we can exploit bnode anonymity to reduce the
delta size when comparing RDF/S KBs. We proved that finding the optimal
mapping between the bnodes of two KBs, i.e. the one that returns the smallest
in size delta regarding the unnamed part of these KBs, is NP-Hard in the general
case, and polynomial in case there are not directly connected bnodes. To cope
with the general case we presented polynomial algorithms returning approximate
solutions.

In real datasets with no directly connected bnodes AlgSign was two orders
of magnitude faster than AlgHung (less than one second for KBs with 6,390
bnodes), but yielded up to 0.34 times (or 34%) bigger deltas than AlgHung, i.e.
than the optimal mapping. AlgHung also identified all equivalent KBs.
For checking the behavior of the algorithms in KBs with directly connected
bnodes, we created synthetic datasets, over which we compared AlgSign and the
AlgHung approximation algorithm. AlgHung yielded from 0 to 3 times smaller
deltas than AlgSign, but the latter was from 18 to 57 times faster. AlgSign requires
only 10.5 seconds to match 153,600 bnodes.

This is the first work on this topic. Several issues are interesting for fur-
ther research. For instance, it is worth investigating other special cases where
the optimal mapping can be found polynomially (e.g. directly connected bnodes
that form graphs of bounded tree width). Another direction is to comparatively
evaluate various (probabilistic) signature construction methods and greedy ap-
proximation algorithms.

Software and datasets are available to download and use from:
http://www.ics.forth.gr/isl/BNodeDelta.

Acknowledgement Many thanks to the anonymous reviewers for their com-
ments which helped us to improve the paper, as well to the members of FORTH-
ICS-ISL. This work was partly supported by the NoE APARSEN (Alliance Per-
manent Access to the Records of Science in Europe, FP7, Proj. No 269977, 2011-
2014), and the FP7 Research Infrastructures projects SCIDIP-ES (SCIence Data

16 Yannis Tzitzikas, Christina Lantzaki, and Dimitris Zeginis

Infrastructure for Preservation - Earth Science, 2011, 2014), and iMarine (FP7
Research Infrastructures, 2011-2014).

References

1. T. Berners-Lee and D. Connoly. ”Delta: An Ontology for the Distribution of
Differences Between RDF Graphs”, 2004. http://www.w3.org/DesignIssues/Diff.

2. François Bourgeois and Jean-Claude Lassalle. An extension of the Munkres algo-
rithm for the assignment problem to rectangular matrices. Commun. ACM, 1971.

3. J. J. Carroll. “Matching RDF graphs”. In Procs of the ISWC’02, 2002.
4. R. Cloran and B. Irwin. ”Transmitting RDF graph deltas for a Cheaper Semantic

Web”. 2005.
5. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base

systems. In Selected Papers from the Intern. Semantic Web Conf. ISWC, 2004.
6. P. Hayes. “RDF Semantics, W3C Recommendation”, 2004.
7. J. Heflin, J. Hendler, and S. Luke. “Coping with Changing Ontologies in a Dis-

tributed Environment”. In AAAI-99 Workshop on Ontology Management, 1999.
8. M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. “Ontology versioning and

change detection on the web”. In Procs of EKAW’02, 2002.
9. G. Klyne and J. J. Carroll. Resource Description Framework (RDF):Concepts and

Abstract Syntax, 2004.
10. A. Mallea, M. Arenas, A. Hogan, and A. Polleres. On blank nodes. In Procs of the

10th Intern. Semantic Web Conference (ISWC 2011). Springer, October 2011.
11. Sergio Muñoz, Jorge Pérez, and Claudio Gutierrez. Simple and Efficient Minimal

RDFS. Web Semantics, 2009.
12. J. Munkres. Algorithms for the assignment and transportation problems. J-SIAM,

5(1), 1957.
13. A. Newman, YF Li, and J. Hunter. A scale-out rdf molecule store for improved co-

identification, querying and inferencing. In Intern. Workshop on Scalable Semantic
Web Knowledge Base Systems (SSWS), 2008.

14. J. Noessner, M. Niepert, C. Meilicke, and H. Stuckenschmidt. Leveraging termi-
nological structure for object reconciliation. Procs of ESWC’10, 2010.

15. N. F. Noy, S. Kunnatur, M. Klein, and M. A. Musen. “Tracking Changes During
Ontology Evolution”. In Procs of ISWC’04, 2004.

16. N. F. Noy and M. A. Musen. ”PromptDiff: A Fixed-point Algorithm for Comparing
Ontology Versions”. In Procs of AAAI-02, 2002.

17. B. Schandl. Replication and versioning of partial rdf graphs. ESWC’10, 2010.
18. C. Strubulis, Y. Tzitzikas, M. Doerr, and G. Flouris. Evolution of Workflow Prove-

nance Information in the Presence of Custom Inference Rules. In 3rd Intern.
Workshop on the role of Semantic Web in Provenance Management (SWPM’12),
co-located with ESWC’12, Heraklion, Crete, 2012.

19. G. Tummarello, C. Morbidoni, R. Bachmann-Gmur, and O. Erling. RDFSync:
efficient remote synchronization of RDF models. In (ISWC-07), 2007.

20. M. Volkel, W. Winkler, Y. Sure, S. Ryszard Kruk, and M. Synak. ”SemVersion:
A Versioning System for RDF and Ontologies”. In Procs of ESWC’05., 2005.

21. D. Zeginis, Y. Tzitzikas, and V. Christophides. “On the Foundations of Computing
Deltas Between RDF Models”. In Procs of ISWC-07, 2007.

22. D. Zeginis, Y. Tzitzikas, and V. Christophides. “On Computing Deltas of RDF/S
Knowledge Bases”. ACM Transactions on the Web (TWEB), 2011.

