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Abstract. Despite decades of e�ort, intelligent object search remains
elusive. Neither search engine nor semantic web technologies alone have
managed to provide usable systems for simple questions such as ��nd me
a �at with a garden and more than two bedrooms near a supermarket.�
We introduce deqa, a conceptual framework that achieves this elusive
goal through combining state-of-the-art semantic technologies with ef-
fective data extraction. To that end, we apply deqa to the UK real
estate domain and show that it can answer a signi�cant percentage of
such questions correctly. deqa achieves this by mapping natural lan-
guage questions to Sparql patterns. These patterns are then evaluated
on an RDF database of current real estate o�ers. The o�ers are obtained
using OXPath, a state-of-the-art data extraction system, on the major
agencies in the Oxford area and linked through Limes to background
knowledge such as the location of supermarkets.

1 Introduction

Answering questions such as ��nd me a �at to rent close to Oxford University
with a garden� is one of the challenges that has haunted the semantic web vision
since its inception [3]. Question answering has also been the holy grail of search
engines, as recently illustrated by both Google and Bing touting �structured
data� search and �query answering�. Though both of these e�orts have made
great strides in answering questions about general, factual knowledge, they have

? The research leading to these results has received funding under the European Com-
mission's Seventh Framework Programme (FP7/2007�2013) from ERC grant agree-
ment DIADEM, no. 246858, IP grant agreement LOD2, no. 257943 and Eurostars
E!4604 SCMS.



fallen short for more transient information such as real estate, tickets, or other
product o�erings. Vertical search engines and aggregators also fail to address
such questions, mostly due to a lack of natural language understanding and
limited background knowledge.

This is true even though data extraction and semantic technologies aim to
address this challenge from quite opposite directions: On the one hand, the aim
of web extraction is to obtain structured knowledge by analyzing web pages.
This does not require publishers to make any changes to existing websites, but
requires re-engineering the original data used to generate a website. On the other
hand, semantic technologies establish the means for publishers to directly provide
and process structured information, avoiding errors in extracting ambiguously
presented data, but placing a considerable burden on publishers. Despite this
chasm in how they approach question answering, neither has succeeded in pro-
ducing successful solutions for transient, �deep� web data (in contrast to general,
Wikipedia-like knowledge and web sites).

In this paper, we show that in this very dichotomy lies the solution to ad-
dressing deep web question answering: We present deqa, a system that allows
the easy combination of semantic technologies, data extraction, and natural lan-
guage processing and demonstrate its ability to answer questions on Oxford's
real estate market. The data is extracted from the majority of Oxford's real
estate agencies, despite the fact that none publishes semantic (or other struc-
tured) representations of their data, and combined with background knowledge,
e.g., to correlate real estate o�ers with points of interest such as the �Ashmolean
Museum� or close-by supermarkets.

deqa is the �rst comprehensive framework for deep web question answering

approaching the problem as a combination of three research areas: (1) Web

data extraction � to obtain o�ers from real estate websites, where no structured
interface for the data is available (which happens to be the case for all Oxford
real estate agencies). (2) Data integration � to interlink the extracted data with
background knowledge, such as geo-spatial information on relevant points of
interest. (3) Question answering � to supply the user with a natural language
interface, capable of understanding even complex queries. For example a query
like ��nd me a �at to rent close to Oxford University with a garden� can be
answered by deqa. However, this cannot be achieved without adaptation to the
speci�c domain. The unique strength of deqa is that it is based not only on
best-of-breed data extraction, linking, and question answering technology, but
also comes with a clear methodology specifying how to adapt deqa to a speci�c
domain. In Section 3, we discuss in detail what is required to adapt deqa to a
new domain and how much e�ort that is likely to be.

deqa Components We developed deqa as a conceptual framework for enhancing
classic information retrieval and search techniques using recent advances in three
technologies for the above problems, developed by the three groups involved in
deqa: DIADEM at Oxford, AKSW at Leipzig, and CITEC at Bielefeld.

(1) OXPath is a light-weight data extraction system particularly tailored to
quick wrapper generation on modern, scripted web sites. As demonstrated in



[9], OXPath is able to solve most data extraction tasks with just four extensions
to XPath, the W3C's standard query language for HTML or XML data. Fur-
thermore, through a sophisticated garbage collection algorithm combined with
tight control of the language complexity, OXPath wrappers outperforms existing
data extraction systems by a wide margin [9]. For the purpose of integration
into deqa, we extended OXPath with the ability to direct extract RDF data,
including type information for both entities and relations.

(2) The real estate o�ers extracted with OXPath contain no or little contex-
tual knowledge, e.g., about general interest locations or typical ranges for the
extracted attributes. To that end, we link these extracted o�ers with external
knowledge. This is essential to answer common-sense parts of queries such as
�close to Oxford University�. Speci�cally, we employ the Limes [24, 23] frame-
work, which implements time-e�cient algorithms for the discovery of domain-
speci�c links to external knowledge bases such as DBpedia [1].

(3) To apply question answering in a straightforward fashion on the sup-
plied, extracted, and enriched knowledge, we employ the TBSL approach [29]
for translating natural language questions into SPARQL queries. TBSL disam-
biguates entities in the queries and then maps them to templates which capture
the semantic structure of the natural language question. This enables the un-
derstanding of even complex natural language containing, e.g., quanti�ers such
as the most and more than, comparatives such as higher than and superlatives
like the highest � in contrast to most other question answering systems that map
natural language input to purely triple-based representations.

Using the combination of these three technologies allows us to adjust to a
new domain in a short amount of time (see Section 3), yet to answer a signi�cant
percentage of questions about real estate o�ers asked by users (see Section 4).

Contributions. These results validate our hypothesis, that the combination of
these technologies can (and may be necessary to) yield accurate question an-
swering for a broad set of queries in a speci�c domain. This is achieved without
requiring publishers to provide structured data and at a fairly low e�ort for
domain adaptation. Speci�cally,

(1) deqa is the �rst comprehensive deep web question answering system for

entire domains that can answer the majority of natural language questions
about objects only available in form of plain, old HTML websites (Section 2).

(2) These websites are turned into structured RDF data through an extension

of OXPath for RDF output, providing a concise syntax to extract object and
data properties (Section 2.1).

(3) By extracting this data into RDF and linking it with background knowledge,
it can answer not only queries for speci�c attributes (�in postcode OX1�),
but also queries using common-sense criteria (�close to Oxford University�),
see Section 2.2.

(4) With TBSL, we are able to map such queries to Sparql expressions even
if they include complex natural language expressions such as �higher than�.

(5) deqa provides a methodology and framework that can be rapidly instanti-
ated for new domains, as discussed in Section 3.
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Fig. 1: Overview of the deqa conceptual framework.

(6) As a case study, we instantiate deqa to Oxford's entire real estate market,
involving the 20 largest real estate agents and all of their properties on sale,
and illustrate the necessary e�ort.

(7) A user-centric evaluation demonstrates that deqa is able to answer many
of the natural language questions asked by users (Section 4).

With these contributions, deqa is the �rst comprehensive framework for deep
web query answering, covering the extraction and data collection process as well
as the actual query answering, as elaborated in Section 5.

2 Approach

The overall approach of deqa is illustrated in Figure 1: Given a particular do-
main, such as real estate, the �rst step consists of identifying relevant websites
and extracting data from those. This previously tedious task can now be re-
duced to the rapid creation of OXPath wrappers as described in Section 2.1.
In deqa, data integration is performed through a triple store using a common
base ontology. Hence, the �rst phase may be a combination of the extraction
of unstructured and structured data. For instance, websites may already expose
data as RDFa, which can then be transformed to the target schema, e.g. using
R2R [4], if necessary. This basic RDF data is enriched, e.g. via linking, schema
enrichment [16, 6], geo-coding or post-processing steps on the extracted data.
This is particularly interesting, since the LOD cloud contains a wealth of infor-
mation across di�erent domains which allows users to formulate queries in a more
natural way (e.g., using landmarks rather than postcodes or coordinates). For
instance, in our analysis of the real estate domain, over 100k triples for 2, 400
properties were extracted and enriched by over 100k links to the LOD cloud.
Finally, question answering or semantic search systems can be deployed on top
of the created knowledge. One of the most promising research areas in question
answering in the past years is the conversion of natural language to SPARQL
queries [29, 19, 28], which allows a direct deployment of such systems on top of a
triple store. Finally, deqa �rst attempts to convert a natural language query to
SPARQL, yet can fall back to standard information retrieval, where this fails.

The domain-speci�c implementation of the conceptual framework, which we
used for the real estate domain, is depicted in Figure 2. It covers the above
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Fig. 2: Implementation of deqa for the real-estate domain.

described steps by employing state-of-the-art tools in the respective areas, OX-
Path for data extraction to RDF, Limes for linking to the linked data cloud,
and TBSL for translating natural language questions to Sparql queries. In the
following, we brie�y discuss how each of these challenges are addressed in deqa.

2.1 OXPath for RDF extraction

OXPath is a recently introduced [9] modern wrapper language that combines
ease-of-use (through a very small extension of standard XPath and a suite of
visual tools [15]) with highly e�cient data extraction. Here, we illustrate OXPath
through a sample wrapper shown in Figure 3.

This wrapper directly produces RDF triples, for which we extended OXPath

with RDF extraction markers that generate both data and object properties
including proper type information and object identities. For example the extrac-
tion markers <:(gr:Offering> and <gr:includes(dd:House)> in Figure 3 produce �
given a suitable page � a set of matches typed as gr:Offering, each with a set of
dd:House children. When this expression is evaluated for RDF output, each pair
of such matches generates two RDF instances related by gr:includes and typed
as above (i.e., three RDF triples).

To give a more detailed impression of an OXPath RDF wrapper assuming
some familiarity with XPath, we discuss the main features of Figure 3:

(Line 1) We �rst load the web site wwagency.co.uk, a real estate agency
serving the Oxford area, and click on their search button without restricting the
search results. Therein, {click/} is an action which clicks on all elements in the
current context set, in this case, containing only the search button. This action



doc("http://wwagency.co.uk/")//input[@name=’search’]/{click/}/

2 (descendant::a[@class=’pagenum’]

[text()=’NEXT’][1]/{click[wait=1]/})*
4 /descendant::div.proplist_wrap:<(gr:Offering)>

[?.//span.prop_price:<dd:hasPrice(xsd:double)=

6 substring-after(.,’£’)>]

[?.//a[@class=’link_fulldetails’]:<foaf:page=string(@href)>]

8 [?.:<gr:includes(dd:House)>

[?.//h2:<gr:name=string(.)>]

10 [?.//h2:<vcard:street_address=string(.)>]

[?.//div.prop_maininfo//strong[1]:<dd:bedrooms=string(.)>]

12 [? .//img:<foaf:depiction=string(@src)>]

Fig. 3: OXPath RDF wrapper

is absolute, i.e., after executing the action, OXPath continues its evaluation at
the root of the newly loaded document.

(Lines 2�3) Next, we iterate through the next links connecting the pagi-
nated results. To this end, we repeat within a Kleene star expression the fol-
lowing steps: we select the �rst link which is of class ’pagenum’ and contains
the text ’NEXT’. The expression then clicks on the link in an absolute action
{click[wait=1]/} and waits for a second after the onload event to ensure that the
heavily scripted page �nishes its initialization.

(Line 4) On each result page, we select all div nodes of class proplist_wrap

and extract an gr:Offering instance for each such node. Aside from the CSS-
like shorthand for classes (analogously, we provide the # notation for ids), this
subexpression uses the �rst RDF extraction marker: This extraction marker
:<gr:Offering> produces an object instance, because it does not extract a value
necessary to produce a data property. The remainder of the expression adds
object and data properties to this instance, detailing the o�ering speci�cs.

(Lines 5�6) We extract the price of the o�ering by selecting and extracting
the span of class prop_price within the o�ering div. In particular, the marker
:<dd:hasPrice(xsd:double)=substring-after(.,’£’)> speci�es the extraction of a
dd:hasPrice data property of type xsd:double with the value stated after the ’£’

character. The nesting of RDF properties follows the predicate nesting structure,
and thus, as the price is extracted inside a predicate following the extracted of-
fering, this price is associated with the o�ering. We use an optional predicate,

[?φ], to ensure that the evaluation continues, even if an o�ering does not name
a price and the predicate extraction fails.

(Line 7) Links to details pages are extracted as foaf:page data properties.

(Lines 8�12) Aside having a price, an o�ering also needs to refer to a
property, extracted next. In Line 8, with :<gr:includes(dd:House)>, we extract an
instance of the dd:House class as object property of the previous o�ering (because
of the predicate nesting), related via gr:include. The remaining four lines extract
the name, address, the number of bedrooms, and the property images as data



properties belonging to the dd:House instance, as all those properties are extracted
within nested predicates.

This wrapper produces RDF triples as below, describing two instances, the
�rst one dd:g31g111 representing a house with 4 bedrooms in Marston, and the
second one dd:g31g109 representing an o�er on this house at GBP 475000.

dd:g31g111

2 a dd:House ; dd:bedrooms 4 ;

gr:name "William Street, Marston OX3" ;

4 vcard:street-address "William Street, Marston OX3" ;

foaf:depiction "http://www.wwagency.com/i_up/111_1299510028.jpg" .

6 dd:g31g109

a gr:offering ; dd:hasPrice "475000"^^xsd:double ;

8 gr:includes dd:g31g111 .

For more details on OXPath, please refer to [9]. We also provide the full set
of wrappers on the project home page.

2.2 Limes

We discuss the Limes speci�cation used to link and integrate the RDF data
extracted by OXPath with LinkedGeoData � a vast knowledge base extracted
from OpenStreetMaps containing spatial data including points-of-interest such
as schools. The following listing shows an excerpt of the speci�cation that links
houses extracted by OXPath with nearby schools. Every link discovery process
requires a set S of source and T target instances that are to be linked. In Limes,
these can be de�ned by specifying the restrictions on the instances as well as the
set of properties that these instances must possess to be linked. In our example,
the set S (speci�ed by the tag <SOURCE>) consists of oxford:House which possess
a longitude and a latitude. Similarly, the set T (which is omitted in the listing
for brevity) was de�ned as all the schools whose latitude lies between 50 and 52
degrees and whose longitude lies between -2 and -1 degrees. For instances a ∈ S
and b ∈ T , the similarity is set to

1

1 +
√
(a.wgs:lat− b.wgs:lat)2 + (a.wgs:long− b.wgs:long)2)

. (1)

Two instances are then considered close to each other (described by the predicate
dbp:near) if their similarity was at least 0.95.

<SOURCE> <ID>oxford</ID>

2 ...

<VAR>?a</VAR>

4 <RESTRICTION>?a a oxford:House</RESTRICTION>

<PROPERTY>wgs:lat AS number</PROPERTY>

6 <PROPERTY>wgs:long AS number</PROPERTY> </SOURCE>

...

8 <METRIC>euclidean(a.wgs:lat|wgs:long, b.wgs:lat|wgs:long)</METRIC>

<ACCEPTANCE> <THRESHOLD>0.9975</THRESHOLD>



10 <FILE>allNear.ttl</FILE>

<RELATION>dbp:near</RELATION> </ACCEPTANCE>

12 ...

The property values of all schools from LinkedGeoData that were found to be
close to houses extracted by OXPath were subsequently retrieved by Limes and
loaded into the deqa triple store.

2.3 TBSL Question Answering
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Fig. 4: Overview of the TBSL question answering engine (source: [29]).

Figure 4 gives an overview of our template-based question answering ap-
proach TBSL [29]. The system takes a natural language question as input and
returns a SPARQL query and the corresponding answer(s) as output. First, the
natural language question is parsed on the basis of its part-of-speech tags and
a domain-independent grammar comprising for example wh-words, determiners,
and numerals. The result is a semantic representation of the natural language
query, which is then converted into a SPARQL query template. This template
�xes the overall structure of the target query, including aggregation functions
such as �lters and counts, but leaves open slots that still need to be �lled with
URIs corresponding to the natural language expressions in the input question.
For example, the question �Give me all �ats near Oxford University� yields the
following template query, which contains a class slot for some URI correspond-
ing to ��ats�, a resource slot for some URI corresponding to �Oxford University�,
and a property slot that expresses the �near� relation:

SELECT ?y WHERE {



?y ?p1 ?y0.

?y rdf:type ?p0.
}

� y0: �Oxford University� (resource)
� p0: ��ats� (class)
� p1: �near� (object property)

In order to �ll these slots, entity identi�cation approaches are used to obtain ap-
propriate URIs, relying both on string similarity and natural language patterns
compiled from existing structured data in the Linked Data cloud and text docu-
ments (cf. [10]). This yields a range of query candidates as potential translations
of the input question. Those candidates are ranked on the basis of string simi-
larity values, prominence values, and schema conformance checks. The highest
ranked queries are then tested against the underlying triple store and the best
answer is returned to the user.

3 Domain Adaption Costs

deqa requires instantiation for a speci�c domain, however, through advances in
semantic and web extraction technologies this adaptation involves far less e�orts
than in the past and is now feasible even with limited resources. We substantiate
this claim by discussing the resources required for our case study on Oxford's real
estate for (1) system setup and domain adaptation and for and (2) maintaining
the wrappers and links to background knowledge.

The �rst step in adapting deqa to a new domain is the creation or adaption

of a suitable domain ontology in RDFS. In our case, the ontology consists of 5
object properties, 7 data properties, 9 classes, and 10 individuals, all speci�ed in
less than 150 lines of turtle code. We were cautious to capture all relevant cases.
Hence we build the ontology iteratively while �tting a dozen representative o�ers
from 4 di�erent agencies into the ontology � reaching already a saturation. The
entire process of ontology creation took four domain experts a couple of hours.

Web extraction. Having the ontology, we need to develop wrappers to
extract the data from the relevant sites. The process consists of identifying the
relevant DOM features to frame the data to be extracted, and running su�ciently
many tests to check the wrapper's behavior on other pages from the same site.
The wrappers we employ in our case study took on average 10 minutes each to
create, such that it took an OXPath expert less than a day to identify the 20 most
relevant web sites and write appropriate wrappers. To ease OXPath wrapper
generation, we relied on Visual OXPath [15], a supervised wrapper induction
system that generates highly robust wrappers from few examples: The system
embeds a real browser, and records user interaction on the page (e.g., navigation,
click, form �lling). Once, the relevant data has been reached, the user marks the
data to extract (e.g., price), and checks whether Visual OXPath generalizes the
selection correctly, in case re�ning the selection. In our user study [15], we show
that even users without prior knowledge of OXPath can create a wrapper in less
than three minutes (not counting testing and veri�cation) on average.



Linking. Creating Limes link speci�cations can be carried out in mani-
fold ways. For example, Limes provides active learning algorithms for the semi-
automatic detection of link speci�cations that have been shown to require only
a small number of annotations (i.e., 10 − 40 depending on the data quality) to
detect high-quality link speci�cations [25, 22]. Given that we had clear de�nition
of the two predicates near (for distances up to 2km) and atWalkingDistance (for
distances up to 500m) to be computed for the domain at hand, we chose to
create link speci�cations manually for each of these predicates.

Question Answering The component for parsing a user question and con-
structing query templates requires only little domain adaptation. The core part
of the lexicon that is used for parsing comprises domain-independent expres-
sions that can be re-used, all other entries are built on the �y. The only part
that was added for deqa were lexical entries covering some typical tokens with
�xed mappings to URIs in the given domain, e.g. �near�. This has been done for
six mappings, resulting in 20 domain-speci�c entries. The required manual e�ort
amounts to less than an hour.

System Maintenance

The frequency to which a wrapper needs to be updated is directly correlated to
its robustness. Robustness measures the degree of a wrapper to still select the
same nodes after changes on the page. Both [15, 12] show that wrappers without
robustness consideration have limited lifespan, but Visual OXPath implements a
number of techniques to prolong the �tness of its wrappers. In particular, given
only a single example, Visual OXPath suggests a list of expressions ranked by ro-
bustness of the generated wrapper. We have evaluated the top-ranked suggested
wrappers over 26 weeks, showing that they fail only after 26 weeks in contrast
to average wrappers that fail in 9− 12 weeks. In Oxford real estate, we estimate
that wrapper maintenance will involve about one failing wrapper per week.

Linking and Question Answering The system maintenance for the Limes
link speci�cations is minimal. If the schema is not altered, the speci�cations
created can simply be reran when the data endpoints are updated. In case of an
alteration of the schema, the PROPERTY and METRIC tags of the speci�cation need
to be altered. This is yet a matter of minutes if the schema of both endpoints
is known. If the new schema is not known, then the link speci�cation has to
be learned anew. Previous work [22] has shown that even on large data sets,
learning such a speci�cation requires only about 5 min. For question answering,
no regular maintenance e�ort is usually required. An exception, both for linking
and question answering, are schema changes. Such changes can in rare cases
invalidate speci�cations, in which case they have to be altered manually. TBSL
is �exible in terms of schema changes as long as entities use appropriate labels or
URIs. For instance, in [29] was applied to the DBpedia ontology with hundreds of
classes and properties without requiring manual con�guration for adapting it to
this schema. However, previously manually added domain-speci�c con�guration
entries for improving the performance of TBSL may require updates in case of
schema changes.



number of questions 100

�SPARQL queries created 71

�SPARQL queries returning results 63

�SPARQL queries with correct results 49

�exactly intended SPARQL query 30

�SPARQL queries with incorrect results 14

(a) Evaluation results

failures

�data coverage 9

�linguistic coverage 18

�POS tagging 2

�other reasons 6

(b) Failure reasons

Table 1: Evaluation results and failures

4 Evaluation

The components comprising the deqa platform have been evaluated in the re-
spective reference articles, in particular [9] for OXPath, [24] for LIMES, and [29]
for TBSL. Hence, we are mostly interested in an evaluation of the overall sys-
tem, as well as speci�c observation for the Oxford real estate case study. The
main bene�t of deqa is to enhance existing search functionality with question
answering. Therefore, we evaluate the overall system for the real-estate domain
by letting users ask queries and then verifying the results.

First deqa was instantiated for Oxford real-estate as described in Section 3.
The OXPath wrappers, the LIMES specs and the TBSL con�guration are all
publicly available at http://aksw.org/projects/DEQA. Our dataset consists of
more than 2400 o�ers on houses in Oxfordshire, extracted from the 20 most
popular real estate agencies in the area. The wrappers extract spatial information
from 50% of the agencies, typically extracted from map links. For all properties
in our dataset, we extract street address and locality. The full postcode (e.g.,
OX27PS) is available in 20% of the cases (otherwise only the postcode area, e.g.,
OX1 for Oxford central is available). 96% of all o�ers expose directly the price,
the remaining 4% are �price on inquiry�. Images and textual descriptions are
available for all properties, but not all agencies publish the number of bathrooms,
bedrooms and reception rooms. These o�ers are enriched by LIMES with 93, 500
links to near (within 2 kilometres) and 7, 500 links to very near (within 500
metres) spatial objects. The data is also enriched by loading 52, 500 triples from
LinkedGeoData describing the linked objects. Domain speci�c spatial mappings
were added to TBSL, e.g. �walking distance� is mapped to �very near�.

We asked 5 Oxford residents to provide 20 questions each. They were told
to enter questions, which would typically arise when searching for a new �at or
house in Oxford. We then checked, whether the questions could be parsed by
TBSL, whether they could successfully be converted to a SPARQL query on the
underlying data and whether those SPARQL queries are correct.

4.1 Results and Discussion

It turned out that most questions would be impossible to answer by only em-
ploying information retrieval on the descriptions of properties in Oxford. Many



questions would also not be possible to answer via search forms on the respective
real-estate websites, as they only provide basic attributes (price, bedroom num-
bers), but neither more advanced ones (such as �Edwardian�, with garden) nor
have a concept of close-by information (such as close to a supermarket). Even
if they can be answered there, the coverage would be low as we extracted data
using over 20 wrappers. While some questions had similar structures, there is
little overlap in general.

The results of our experiment are shown in Tables 1a and 1b. Most ques-
tions can be converted successfully to SPARQL queries and many of those are
the SPARQL queries intended by users of the system. Hence, deqa provides
signi�cant added value in the real estate domain in Oxford despite the rela-
tively small e�ort necessary for setting up the system. For the questions, which
were not correctly answered, we analysed the reasons for failure and summarise
them in Table 1b. If questions were not correctly phrased, such as �house with
immediately available�, they lead to part-of-speech tagging problems and parse
failure. Such issues will be dealt with by integration query cleaning approaches
into deqa. In some cases TBSL could not answer the question because it lacks
certain features, e.g. negation such as �not in Marston� or aggregates such as av-
erage prices in some area. But since TBSL uses a �rst order logical representation
of the input query internally, those features can be added to the QA engine in
the future. Support for some aggregates such as COUNT already exists. In some
cases, on the other hand, data was insu�cient, e.g. users asking for data that
was neither extracted by OXPath nor available through the links to LinkedGeo-
Data, e.g. �house in a corner or end-of-terrace plot�. Moreover, some questions
contain vague, subjective criteria such as �cheap�, �recently� or even �representa-
tive�, the exact meaning of which heavily depends on the user's reference values.
In principle, such predicates could be incorporated in TBSL by mapping them
to speci�c restrictions, e.g. cheap could be mapped to costs for �ats less than
800 pounds per month. The extended version of deqa will be compared with
classical retrieval engines to quantify the added value of our approach.

An example of a successful query is �all houses in Abingdon with more than
2 bedrooms�:

SELECT ?y WHERE {

2 ?y a <http://diadem.cs.ox.ac.uk/ontologies/real-estate#House> .

?y <http://diadem.cs.ox.ac.uk/ontologies/real-estate#bedrooms> ?y0 .

4 ?y <http://www.w3.org/2006/vcard/ns#street-address> ?y1 .

FILTER(?y0 > 2) .

6 FILTER(regex(?y1,’Abingdon’,’i’)) .

}

In that case, TBSL �rst performs a restriction by class (�House�), then it �nds
the town name �Abingdon� from the street address and it performs a �lter on
the number of rooms. Note that many QA systems over structered data rely on
purely triple-based representations (e.g. PowerAqua [20]) and therefore fail to
include such �lters.



Another example is �Edwardian houses close to supermarket for less than
1,000,000 in Oxfordshire�, which was translated to the following query:

SELECT ?x0 WHERE {

2 ?x0 <http://dbpedia.org/property/near> ?y2 .

?x0 a <http://diadem.cs.ox.ac.uk/ontologies/real-estate#House> .

4 ?v <http://purl.org/goodrelations/v1#includes> ?x0 .

?x0 <http://www.w3.org/2006/vcard/ns#street-address> ?y0 .

6 ?v <http://diadem.cs.ox.ac.uk/ontologies/real-estate#hasPrice> ?y1 .

?y2 a <http://linkedgeodata.org/ontology/Supermarket> .

8 ?x0 <http://purl.org/goodrelations/v1#description> ?y .

FILTER(regex(?y0,’Oxfordshire’,’i’)) .

10 FILTER(regex(?y,’Edwardian ’,’i’)) .

FILTER(?y1 < 1000000) .

12 }

In that case, the links to LinkedGeoData were used by selecting the �near� prop-
erty as well as by �nding the correct class from the LinkedGeoData ontology.

4.2 Performance Evaluation

We conclude this evaluation with a brief look at the system performance, fo-
cusing on the resource intensive background extraction and linking, which re-
quire several hours compared to seconds for the actual query evaluation. For
the real-estate scenario, the TBSL algorithm requires 7 seconds on average for
answering a natural language query using a remote triple store as backend. The
performance is quite stable even for complex queries, which required at most 10
seconds. So far, the TBSL system has not been heavily optimised in terms of
performance, since the research focus was clearly to have a very �exible, robust
and accurate algorithm. Performance could be improved, e.g., by using fulltext
indices for speeding up NLP tasks and queries.

Extraction. In [9] we show that OXPath 's memory requirements are inde-
pendent of the number of pages visited: For deqa, the average execution time
of our wrappers amounts to approximately 30 pages/min. As we do not want to
overtax the agencies' websites, this rate is high enough to crawl an entire web-
site in few minutes. For OXPath this rate is quite slow, but is rooted in inherent
characteristics of the domain: (1) Many real estate websites are unable to serve

requests at higher rates, and (2) supply heavily scripted pages, containing many
images or fancy features like �ash galleries. Indeed, the evaluation of OXPath
is dominated by the browser initialisation and rendering time [9], amounting to
over 80% in the real estate case.

Linking. The runtime of the link discovery depends largely on the amount of
data to link. In our use case, fetching all data items for linking from the endpoints
required less than 3 minutes while the link discovery process itself was carried
out in 0.6 seconds for discovering the near-by entities and 0.3 seconds for the
entities at walking distance.

In summary, the data extraction and linking can be easily done in a few
minutes per agency and can be run in parallel for multiple agencies. This allows



us to refresh the data at least once per day, without overtaxing the resources of
the agencies.

5 Related Work

deqa is, to the best of our knowledge, the �rst comprehensive deep web question

answering system addressing the whole process from data extraction to ques-
tion answering. In contrast, previous approaches have been limited either with
respect to their access to deep web data behind scripted forms [21] by targeting
only common-sense, surface web data, or by requiring user action for form nav-
igation (Morpheus, [11]). Though �federated� approaches that integrate data
from di�erent forms have been considered [17], none has integrated the extracted
data with existing background knowledge, limiting the types of questions that
can be answered. In the following, we brie�y discuss related work for each of
deqa's components to illustrate why we believe this is the right combination.

Web Extraction. To extract the relevant data from the real estate agencies,
we can resort essentially to three alternatives in web data information extrac-
tion [7], namely traditional information extraction, unsupervised data extrac-
tion, or supervised data extraction, with OXPath falling into the last category.
Information extraction systems, such as [8, 2], focus on extraction from plain text
which is not suitable for deep web data extraction of product o�ers, where most of
the data is published with rich visual and HTML structure, yielding much higher
accuracy than IE systems. Unsupervised data extraction [31, 13] approaches can
use that structure, but remain limited in accuracy mostly due to their inability
to distinguish relevant data from noise reliably. Thus, the only choice is a super-
vised approach. In [9] OXPath and related supervised approaches are discussed
at length. In summary, OXPath presents a novel trade-o� as a simpler, easier
language with extremely high scalability at the cost of more sophisticated data
analysis or processing capabilities. As shown in deqa, such abilities are better
suited for post-processing (e.g., through Limes for linking).

Linking. Limes [25] o�ers a complex grammar for link speci�cations, and re-
lies on a hybrid approach for computing complex link speci�cations. In contrast
to Limes, which employs lossless approaches, [27] uses a candidate selection
approach based on discriminative properties to compute links very e�ciently
but potentially loses links while doing so. Link Discovery is closely related with
record linkage and deduplication [5]. Here, the database community has de-
veloped di�erent blocking techniques to address the complexity of brute force
comparison [14] and very time-e�cient techniques to compute string similarities
for record linkage (see e.g., [30]). In recent work, machine learning approaches
have been proposed to discover link speci�cations. For example [22] combine
genetic programming and active learning while [26] learns link speci�cations in
an unsupervised manner.

Question Answering. There is a range of approaches to QA over structured
data, for an overview see [19]. Here we discuss TBSL in contrast to two prominent
systems to exemplify two opposite key aspects: PowerAqua [20], a purely data-



driven approach, and Pythia [28], which heavily relies on linguistic knowledge.
TBSL speci�cally aims at combining the bene�ts of a deep linguistic analysis
with the �exibility and scalability of approaches focusing on matching natural
language questions to RDF triples. This contrasts with PowerAqua [20], an open-
domain QA system that uses no linguistic knowledge and thus fails on questions
containing quanti�ers and comparisons, such as the most and more than. Pythia
[28], on the other hand, is a system that relies on a deep linguistic analysis, yet
requires an extensive, manually created domain-speci�c lexicon.

6 Conclusion

deqa is a comprehensive framework for deep web question answering, which
improves existing search functionality by combining web extraction, data inte-
gration and enrichment as well as question answering. We argue that recent ad-
vances allow the successful implementation of the deqa framework and consider
this to be one of the prime examples for bene�ts of semantic web and arti�cial
intelligence methods. We instantiate deqa for the real estate domain in Oxford
and show in an evaluation on 100 user queries that deqa is able to answer a
signi�cant percentage correctly. In addition, we provided a cost analysis which
describes the setup and maintenance e�ort for implementing deqa in a particu-
lar domain. All used software components as well as the actual queries and used
con�guration �les are freely available (http://aksw.org/projects/DEQA).
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