Extracting Justifications from
BioPortal Ontologies

Matthew Horridge!, Bijan Parsia?, Ulrike Sattler?

L Stanford University
California, USA, 94305
{matthew.horridge@stanford.edu}
2 The University of Manchester
Oxford Road, Manchester, M13 9PL
{bparsia@cs.man.ac.uk}

Abstract. This paper presents an evaluation of state of the art black
box justification finding algorithms on the NCBO BioPortal ontology
corpus. This corpus represents a set of naturally occurring ontologies
that vary greatly in size and expressivity. The results paint a picture of
the performance that can be expected when finding all justifications for
entailments using black box justification finding techniques. The results
also show that many naturally occurring ontologies exhibit a rich justi-
ficatory structure, with some ontologies having extremely high numbers
of justifications per entailment.

1 Introduction

A justification J for an entailment 7 in an ontology O is a minimal subset of O
that is sufficient to entail . More precisely, J is a justification for O = n (read
as O entails n) if 7 C O, J E n and for all 7' € J J’' £ n. There can be
multiple, possibly overlapping, justifications for a given ontology and entailment.
Depending upon context, justifications are also known as MUPS (Minimal Un-
satisfiability Preserving Sub-TBoxes) [25] or MINAS (Minimal Axiom Sets) [2].

A justification finding service computes justifications for an ontology and an
entailment. An implementation of a justification finding service is a key com-
ponent in many of the explanation and debugging tools that exist for ontology
development environments such as Swoop [17], the RaDON plugin for the NeOn
Toolkit [14], the explanation workbench for Protégé-4 [12], the explanation fa-
cility in OWL Sight [8], and the explanation view in TopBraid Composer [19].
Justification finding services are also increasingly being used as auxiliary ser-
vices in other applications for example in incremental reasoning [3], reasoning
over very large ABoxes [4], belief base revision [9], meta-modelling support [5],
default reasoning [24], eliminating redundant axioms in ontologies [7], and la-
conic justification finding [13].

Given the prominence and importance of justifications, it is no surprise that
there is a large literature on techniques and optimisations for computing them.

Much of this literature [31,30,16,20,18,26,27,26,15] is focused on empirical inves-
tigations which, generally speaking, are undertaken to validate specific perfor-
mance optimisations and implementation techniques. This begs the question as
to why further empirical investigation is required. In essence, most of the existing
empirical work is performed with prototype implementations on small collections
of ontologies that are chosen to show off the effect of specific optimisations and
demonstrate proof of concept. This is obviously a completely valid thing to do.
However, many of the experiments do not provide a true picture of how highly
optimised and robustly implemented justification finding techniques, that take
advantage of all published optimisations, will perform on state of the art on-
tologies that are now widely available. In addition to this, none of the existing
experiments were designed to investigate the justification landscape of a broad
corpus of ontologies—that is, there is very little data about the numbers and
sizes of justifications that one could encounter in naturally occurring ontologies.

The overall aim of this paper is to therefore present a thorough investigation
into the practicalities of computing all justifications for entailments in published,
naturally occurring ontologies. In particular, ontologies which are representative
of typical modelling and are not tutorial or reasoner test-bed ontologies. The
end goal is to provide a view of how modern, robustly implemented and highly
optimised justification finding algorithms, coupled with modern highly optimised
reasoners, perform on realistic inputs, and to paint a picture of the richness of
the justification landscape.

All of the data and software, including ontologies, extracted entailments,
entailment test timings, hitting set tree statistics, justifications and other raw
results, is available online? for third parties to access. It should be of interest to
those working in justification based research, ontology comprehension, reasoner
development, and module extraction amongst other areas.

2 Justification Finding Techniques

In general, algorithms for computing justifications are described using two axes
of classification. The first, the single-all-axis is whether an algorithm computes a
single justification for an entailment or whether it computes all justifications for
an entailment. The second, the reasoner-coupling-axis is whether the algorithm
is a black-box algorithm or whether it is a glass-box algorithm. The categorisa-
tion is based entirely on the part played by reasoning during the computation
of justifications. In essence, justifications are computed as a direct consequence
of reasoning in glass-box algorithms, whereas they are not computed as a di-
rect consequence of reasoning in black-box algorithms. In this sense, glass-box
algorithms are tightly interwoven with reasoning algorithms, whereas black-box
algorithms simply use reasoning to compute whether or not an entailment follows
from a set of axioms. Because of space constraints, and the fact that black-box
justification finding services work with any OWL reasoner, this paper focuses

3 nttp://wuw.stanford.edu/~horridge/publications/2012/iswc/justextract

entirely on results for black-box justification finding. A detailed analysis of the
differences between glass-box and black-box justification finding algorithm per-
formance may be found in [10]. An advantage of black-box algorithms is that
they can be easily and robustly implemented [16]. A perceived disadvantage of
black-box algorithms is that they can be inefficient and impractical due to a
potentially large search space [29].

Black-Box Algorithms for Computing Single Justifications The basic
idea behind a black-box justification finding algorithm is to systematically test
different subsets of an ontology in order to find one that corresponds to a justifi-
cation. Subsets of an ontology are typically explored using an “expand-contract”
strategy. In order to compute a justification for O |=), an initial, small, subset
S of O is selected. The axioms in S are typically the axioms whose signature has
a non-empty intersection with the signature of 1, or axioms that “define”* terms
in the signature of 7. A reasoner is then used to check if S = 7, and if not, S
is expanded by adding a few more axioms from O. This incremental expansion
phase continues until S is large enough so that it entails . When this happens,
either S, or some subset of S, is guaranteed to be a justification for 7. At this
point S is gradually contracted until it is a minimal set of axioms that entails n
i.e. a justification for n in O.

Black-Box Algorithms for Computing All Justifications When formulat-
ing a repair plan for an entailment, or attempting to understand an entailment,
it is usually necessary to compute all justifications for that entailment. This
can be achieved using black-box techniques for finding single justifications in
combination with techniques that are borrowed from the field of model based
diagnosis [1]. Specifically, all justifications can be computed by performing sys-
tematic “repairs” of the ontology in question, which eliminate already found
justifications, and searching for new justifications after each repair. In order to
compute these repairs a classical a hitting set tree based algorithm is used. A full
discussion of this algorithm, which is based on seminal work by Reiter [23], is
beyond the scope of this paper, but suffice it to say, the algorithm is widely used
in various fields, has been well used and documented in the field of computing
justifications [16], and is reasonably well understood in this area. Due to space
constraints a more detailed presentation is not offered here, but a comprehensive
overview may be found in Chapter 3 of [10].

3 Materials (The BioPortal Corpus)

The number of published real world ontologies has grown significantly since com-
puting justifications for entailments in OWL ontologies was first investigated
from around 2003 onwards. In particular, in the last three years the number of
ontologies in the biomedical arena has grown considerably. Many of these ontolo-
gies have been made available via the NCBO BioPortal ontology repository [22].
At the time of writing, BioPortal provides access to the imports closures of over

4 For example, the axiom A C B defines the class name A

250 bio-medical ontologies in various formats, including OWL and OBO? [28].
Not only is BioPortal useful for end users who want to share and use biomedical
ontologies, it is also useful for ontology tools developers as it provides a corpus
of ontologies that is attractive for the purposes of implementation testing. In
particular, it provides ontologies that: vary greatly in size; vary greatly in ex-
pressivity; are real world ontologies; are developed by a wide range of groups
and developers and contain a wide variety of modelling styles; and finally, are
not “cherry picked” to show good performance of tools.

Curation Procedure The BioPortal ontology repository was accessed on the
12th March 2011 using the BioPortal RESTful Service API. In total, 261 on-
tology documents (and their imports closures) were listed as being available.
Out of these, there were 125 OWL ontology documents, and 101 OBO ontology
documents, giving a total of 226 “OWL compatible” ontology documents that
could theoretically be parsed into OWL ontologies.

Parsing and Checking Each listed OWL compatible ontology document was
downloaded and parsed by the OWL API. OBO ontology documents were parsed
according to the lossless OWL-OBO translation given in [6] and [21]. Any imports
statements were recursively dealt with by downloading the document at the
imports statement URL and parsing it into the imports closure of the original
BioPortal “root” ontology. Each axiom that was parsed into the imports closure
was labelled with the name of the ontology document from where it originated.
If an imported ontology document could not be accessed (for whatever reason)
the import was silently ignored.

Out of the 226 OWL compatible ontology documents that were listed by
the BioPortal API, 7 could not be downloaded due to HTTP 500° errors, and
1 ontology could not be parsed due to syntax errors. This left a total of 218
OWL and OBO ontology documents that could be downloaded parsed into OWL
ontologies. After parsing, four of the ontologies were found to violate the OWL
2 DL global restrictions. In all cases, the violation was caused by the use of
transitive (non-simple) properties in cardinality restrictions. These ontologies
were discarded and were not processed any further, which left 214 ontologies.

Entailment Extraction Three reasoners were used for entailment extraction:
FaCT++, HermiT and Pellet. Each ontology was checked for consistency. Five of
the 214 ontologies were found to be inconsistent. Next, each consistent ontology
was classified and realised in order to extract entailments to be used in the
justification finding experiments. Entailed direct subsumptions between named
classes (i.e. axioms of the form A C B) were extracted, along with direct class
assertions between named individuals and named classes (i.e. axioms of the form
A(a)). It was decided that these kinds of entailments should be used for testing
purposes because they are the kinds of entailments that are exposed through
the user interfaces of tools such as Protégé-4 and other ontology browsers—

® OBO may be seen as an additional serialisation syntax for OWL.
6 An HTTP 500 error is an error code that indicated the web server encountered an
internal error that prevented it from fulfilling the client request.

they are therefore the kinds of entailments that users of these tools typically
seek justifications (explanations) for. The set of entailments for each ontology
was then filtered so that it only contained non-trivial entailments in accordance
with Definition 1.

Definition 1 (Non-Trivial Entailment). Given an ontology O, such that
O E a, the entailment « in O is non-trivial if O\ {a} E «

Intuitively, for an ontology O and an entailment « such that O E «, a is a
non-trivial entailment in O either if « is not asserted in O (i.e. o € O) or, « is
asserted in O (i.e. « € O) but O\ {a} = «a, i.e. O with a removed still entails
a. In total there were 72 ontologies with non-trivial entailments which accounts
for just over one third of the consistent OWL and OBO ontologies contained in
BioPortal.

Reasoner Performance Due to practical considerations, a timeout of 30 min-
utes of CPU time was set for each task of consistency checking, classification and
realisation. There were just three ontologies, for which consistency checking (and
hence classification and realisation) could not be completed within this time out.
These were: GALEN, the Foundational Model of Anatomy (FMA) and NCBI
Organismal Classification. These ontologies were discarded and not processed
any further.

Ontologies With Non-Trivial Entailments There were 72 BioPortal ontolo-
gies that contained at least one non-trivial entailment. The list of these ontologies
may be found in [10] and is available online as a summary’. For these ontologies,
the average number of logical axioms (i.e. non-annotation axioms) per ontology
was 10,645 (SD=31,333, Min=13, Max=176,113). The average number of non-
trivial entailments per ontology was 1,548 (SD=6,187, Min=1, Max=49,537).
The expressivity of the BioPortal ontologies with non-trivial entailments ranged
from £L and EL++ (corresponding to the OWL2EL profile) through to SHOZQ
and SROZQ (the full expressivity of OWL 2 DL).

In summary, the ontology corpus provided by the BioPortal exhibits varying
numbers of non-trivial entailments with a wide range of expressivities. It reflects
current modelling practices and the kinds of ontologies that people use in tools.

4 Method and Results

All of the experiments detailed below were carried out using Pellet version 2.2.0%.
For ontology loading, manipulation and reasoner interaction, the OWL API [11]
version 3.2.2 was used. The OWL API has support for manipulating ontologies

" http://www.stanford.edu/~horridge/publications/2012/iswc/justextract/
data/bioportal-corpus-non-trivial-entailment-summary.pdf

8 The primary reason for using Pellet was that Pellet provides robust implementations
of the OWL API reasoner interfaces and has reliable support for setting timeouts—a
feature that is crucial for long running experiments.

at the level of axioms, and so it is entirely suited for the implementation of the
justification finding algorithms.

Having introduced the overall test setup, the experiment is now described in
detail.

Algorithm Implementation The black box algorithm for finding all justifica-
tions for an entailment, and its sub-routine algorithms, presented in [10] (Algo-
rithms 4.1, 4.2, 4.5 and 4.6) were implemented in Java against the OWL API
version 3.2.0. In essence this algorithm (Algorithm 4.1) is the de-facto standard
black box algorithm for computing all justifications for an entailment. It does this
by constructing a hitting set tree, using standard hitting set tree optimisations
such as node reuse, early path termination etc. Its sub-routine algorithm for
finding single justifications (Algorithm 4.2) uses the expand contract technique,
where expansion is incremental, done by modularisation and selection function
(Algorithm 4.5), and contraction is done using a divide and conquer strategy
(Algorithm 4.6).

Test Data The test data consisted of the 72 BioPortal ontologies that contained
non-trivial entailments. For each ontology, the set of all non-trivial direct sub-
concept (A C B) and direct concept assertion (A(a)) entailments were extracted
and paired up with the ontology.

Method The experiments were performed on MacBook Pro with a 3.06 GHz In-
tel Core 2 Duo Processor. The Java Virtual Machine was allocated a maximum
of 4 GB of RAM. Pellet 2.2.2 was used as a backing reasoner for performing
entailment checks, with each entailment check consisting of a load, followed by
a query to ask whether or not the entailment held. The algorithm implementa-
tion described above was used to compute all justifications for each non-trivial
entailment for each ontology. For each entailment, the CPU time for computing
all justifications was measured, along with the number and sizes of justifications.
For the sake of practicalities, because some ontologies have tens of thousands of
non-trivial entailments (e.g. 49,000+ entailments for the coriell-cell-line ontol-
ogy), a soft time limit of 10 minutes was imposed on computing all justifications
for any one entailment. Additionally, an entailment test time limit of 5 minutes
was placed on entailment checking.

Results® Figure 1 shows a percentile plot for time to compute all justifications.
Note that mean values for each ontology are shown as transparent bars with
white outlines. The x-axis, which shows Ontology Id, is ordered by the value
of the 99th percentile. This percentile was chosen because it provides a good
picture of how the algorithm will perform in practice for the vast majority of
entailments. It also draws out the remaining 1 percent of outliers rather clearly.

There were seven ontologies that contained one or more entailments for
which it was not possible to compute all justifications. These ontologies, along

9 Large scalable plots of figures, and a spreadsheet containing the data used to generate
them can be found at http://www.stanford.edu/~horridge/publications/2012/
iswc/justextract/.

1,000,000

100,000

10,000

1,000

100 il :W
I H
1
« " ”

N E LA

Time / (ms)

Fig. 1: Percentile and Mean Times to Compute All Justifications. Mean times are shown
in white outlines. The x-axis (Ontology) is sorted by the 99th percentile (P99).

O P00 ©IP99 MP9 M P75 M P50

with the total number of entailments and the number of failed entailments are
shown in Table 1. Table 1 also shows the mean/max number of justifications
and mean/max justification size (number of axioms per justification) per failed
entailment and the mean entailment checking times per failed entailment. In
these seven ontologies there were three ontologies for which the failures occurred
over less than one percent of entailments tested, a further three ontologies where
the failures occurred for less than 7 percent of entailments tested, and one final
ontology, where failures occurred for almost 75 percent of entailments tested. In
this last ontology all of the failures were due to entailment checking timeouts.
The failures relating to all of the other ontologies were due to timeouts during
construction of the hitting set tree, which became too large to search within a
period of 10 minutes.

Figure 2 and Figure 3 provide a picture of the justification landscape for the
BioPortal ontologies. Figure 2 shows the the mean number of justifications per
entailment per percentile. It should be noted that the percentiles are calculated
from a reverse ordering of entailments based on justification size. That is, the
nth percentile contains n percent of entailments that have the largest number of
justifications. The x-axis in Figure 2 is ordered by the mean value of the 100th

Table 1: Black-Box Find All Timeouts

Ont. Ents. Failed % Failed Computed Justifications Entailment Check
Number Size Time / (ms)
Mean Max Mean Max Mean SD Max
19 49537 16 0.03 40.6 65 15.7 23 1.1 0.4 3
36 2230 1 0.04 414.0 414 13.5 17 0.5 0.3 2
64 566 4 0.71 1284.5 1411 25.1 28 2.5 1.6 13
70 3997 188 4.70 448.5 1060 12.7 24 7.0 77.8 141,721
45 148 9 6.08 1.6 2 219 24 1,979.9 6,762.4 41,840
3 44 3 6.82 1271.3 1494 26.9 35 2.5 1.3 10

32 35 26 74.29 2.2 7 2.5 8 2,601.2 23,781.0 270,004

1000

100

Number of Justifications per Entailment.

S 3 nEEHS
SMax ™ MeanPl ™ MeanP10 M MeanP25 © MeanPS0 O Mean P100
Fig.2: The Mean Number of Justifications per Entailment for Various Percentiles.
Percentiles of the Entailments Sorted by the Number of Justifications in Descending
Order—e.g. P10 represents the top 10 percent of entailments with the highest number
of justifications per entailment.

percentile (i.e. mean number of justifications per entailment). Figure 3 shows the
mean number of axioms per justification per percentile along with the maximum
number of axioms per entailment. The percentiles are calculated from a reverse
ordering on justification size. For example, the nth percentile contains n percent
of justifications that have a mean size greater than the mean of that percentile.

5 Analysis and Discusssion

The Practicalities of Computing All Justifications for An Entailment
Out of the 72 ontologies it was possible to compute all justifications for all
direct atomic subconcept and concept assertion entailments in 65 ontologies.
There were seven ontologies that contained some entailments for which not all
justifications could be computed. These failures are discussed below, however,
the results from this experiment provide strong empirical evidence that it is
largely practical to compute all justifications for these kinds of entailments in
the BioPortal ontologies. Although the results cannot be statistically generalised
to ontologies outside of the BioPortal corpus it is reasonable to assume that the
results are suggestive for other real world ontologies.

Reasons for Failures Seven of the 72 ontologies contained entailments for
which not all justifications could be computed. Broadly speaking there were two
reasons for this: (1) The justifications for each failed entailment were numerous
and large in size. This resulted in the size of the hitting set tree growing to a
limit where it was not possible to close all branches within 10 minutes. In par-
ticular, for Ontology 36 the hitting set tree grew to over 3 million nodes, and
for Ontology 70 the hitting set tree grew to over 1.6 million nodes. This com-
pares to hitting set tree sizes in the tens of thousands for successful entailments.
(2) Entailment checking performance was such that the number of entailment

checks, in combination with the time for each check, made it impossible to con-
struct the hitting set tree within 10 minutes. This was the case with Ontology
45 and Ontology 32, both of which had average entailment checking times that
were three orders of magnitude higher than for other ontologies. This problem
was particularly endemic for Ontology 32, which suffered the largest number of
failures, and had the worst entailment checking performance of all ontologies
(M=2,601.2 ms, SD=23,781.0 ms, MAX=270,004 ms). Leaving aside entailment
checking performance problems, which can be regarded as being out of the scope
of control of this work, the number of justifications that were computable for
failed entailments was very high. For example, for Ontology 3, which percentage-
wise suffered the highest number of failures, the implementation was still able to
compute on average 1271 justifications per failed entailment, with a maximum
of 1494 justifications. With the exception of Ontology 32, which had a very high
percentage of failures due to poor entailment checking performance, it is fair
to say that over the whole corpus, and within individual ontologies, the failure
rate is low to very low, thus indicating the robustness of the algorithms on real
world ontologies. When the algorithm does fail to find all justifications, it is still
possible to find some justifications, and the number of found justifications tends
to be very large.

The Acceptability of Times for Computing All Justifications As can be
seen from Figure 1, the majority of ontologies contained entailments for which
all justifications could be computed within 1 second. For all but six ontologies, it
was possible to compute all justifications for 99 percent of entailments within 10
seconds. Only two ontologies required longer than one minute for computing all
justifications for 99 percent of entailments in these ontologies, with 90 percent
of entailments in these ontologies falling below the one minute mark. It is clear
to see that there are some outlying entailments in the corpus. In particular, On-
tology 19 (the Coriell Cell Line Ontology) contains the most significant outlier,
with one percent of entailments in this ontology requiring almost 150 seconds
for computing all justifications. However, it appears that the times are perfectly
acceptable for the purposes of generating justifications for debugging or repair
in ontology development environments.

The Number of Justifications per Entailment As can be seen from Figure
2, the number of justifications per entailment varied over much of the BioPortal
corpus. There were just four ontologies which had on average one justification
per entailment. Even ontologies with low average numbers of justification per
entailment did exhibit some entailments with large numbers of justifications
as evidenced by the band of ontologies from 60 to 52 on the left hand side
of Figure 2. On the right hand side of Figure 2, the band of ontologies from
14 through to 70 represent ontologies with very large numbers of justifications
per entailment. For example, Ontology 70 had on average 25 justifications per
entailment, with 10 percent of entailments having over 177 justifications, and
50 percent of entailments having over 48 justifications. This was closely followed
by Ontology 28, which had on average 20 justifications per entailment, with 50
percent of entailments having over 40 justifications. The maximum number of

Numner of Axioms per Justification
8

TRLSIEOTIESIFCESDSAGIDIET VRESEN SV COABS N OITEIITEIITT"RTIANGFBIF LI HS

OMax ™ MeanPl M MeanP10 B MeanP25 O MeanP50 [Mean P100

Fig. 3: Mean Number of Axioms per Justification. Percentiles of the Entailments Sorted
by the Number of Justifications in Descending Order—e.g. P10 represents the top 10
percent of entailments with the highest number of justifications per entailment.

justifications for any one entailment occurred in Ontology 36, which had 837
justifications for one entailment. At this point it is worth noting that none of
the empirical work detailed in the literature has uncovered ontologies with these
large and very large numbers of justifications per entailment.

The Size of Justifications Figure 3 shows the mean numbers of axioms per
justification per ontology. The ontologies are ordered by mean number of axioms
per justification. There is a clear band of ontologies to the left hand side of Fig-
ure 3 that only have, on average, one axiom per justification. Recall that each
entailment is a non-trivial entailment, which means that these justifications are
not simply “self” justifications. In general the mean values (100th percentile) for
each ontology are fairly low, with only 11 ontologies (shown on the right hand
side of Figure 3) having over 5 axioms per justification on average . However, as
witnessed by the 1st, 10th, 25th and 50th percentile columns in Figure 3, there
are in fact many ontologies with many entailments that have larger numbers of
axioms per justification. For example there are 10 ontologies where 50 percent of
justifications contained over 7 axioms, and 10 percent of justifications contained
10 to 16 axioms. At the top end of the scale, several ontologies contained justi-
fications with very large numbers of axioms. For example Ontologies 48, 50, 63,
18 and 41 contained justifications with 21, 23, 24, 25 and 37 axioms respectively.
Finally it should be noted that these larger justifications do not simply consist of
long chains of atomic subclass axioms. All in all, the number of justifications per
entailment, and the size of justifications points to considerable logical richness
being present in many ontologies in the BioPortal corpus.

6 Conclusions and Suggestions for Future Work

The detailed empirical investigation that has been carried out and presented in
this paper provides strong evidence to conclude that computing all justifications

for direct class subsumption and direct class assertion entailments in the Bio-
Portal corpus of consistent ontologies is practical. That is, for the vast majority
of entailments in the majority of ontologies all justifications can be computed in
under 10 minutes of CPU time. In essence, the justification finding algorithms
used in the empirical evaluation here show good and robust runtime performance
on realistic inputs.

While model based diagnosis techniques for computing all justifications fare
extremely well, there are examples of entailments in realistic consistent ontolo-
gies for which it is not possible to compute all justifications. In these cases an
incomplete solution, which could still consist of hundreds of justifications, must
be accepted.

The number of justifications for entailments in naturally occurring domain
ontologies can be very high. In the work presented here the number peaked at
around 1000 justifications per entailment. The sizes of justifications in these
ontologies can be very large, peaking at around 40 axioms per justification. The
majority of ontologies with non-trivial entailments have multiple justifications
per entailment with multiple axioms per justification.

In terms of future work, there are several strands that should be pursued.
The first is that the experiments described here should be replicated and veri-
fied by third parties. It is reasonable to assume that the results presented here
will be repeatable with other OWL reasoners, but this should ideally be inves-
tigated and verified. Finally, the experiments should be carried out on different
ontology corpora. At the time of writing, third party non-biomedical-ontology
installations of the BioPortal software are coming online. It would be interesting
to compare the repositories of ontologies from different communities, in terms
of non-trivial entailments, number justifications per entailment, size of justifica-
tions etc. and see how the justificatory structure and modelling style varies from
one community to another.

References

1. Readings in Model Based Diagnosis. Morgan Kaufmann Publishers Inc. (1992)

2. Baader, F., Penaloza, R.: Axiom pinpointing in general tableaux. Journal of Logic
Computation 20(1), 5-34 (2010)

3. Cuenca Grau, B., Halasheck-Wiener, C., Kazakov, Y.: History matters: Incremen-
tal ontology reasoning using modules. In: ISWC 2007 + ASWC 2007

4. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas,
K., Ma, L.: Scalable semantic retrieval through summarization and refinement. In:
AAAT 2007

5. Glimm, B., Rudolph, S., Vélker, J.: Integrated metamodeling and diagnosis in
OWL 2. In: ISWC 2010

6. Golbreich, C., Horrocks, I.: The OBO to OWL mapping, GO to OWL 1.1! In:

OWLED 2007

Grimm, S., Wissmann, J.: Elimination of redundancy in ontologies. In: ESWC 2011

Grove, M.: OWLSight. http://pellet.owldl.com/ontology-browser (October 2009)

9. Halaschek-Wiener, C., Katz, Y., Parsia, B.: Belief base revision for expressive de-
scription logics. In: OWLED 2006

® N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Horridge, M.: Justification Based Explanation in Ontologies. Ph.D. thesis, School
of Computer Science, The University of Manchester (2011)

Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies.
Semantic Web 2(1), 11-21 (February 2011)

Horridge, M., Parsia, B., Sattler, U.: Explanation of OWL entailments in Protégé-
4. In: Poster and Demo Track, ISWC 2008

Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: ISWC 2008

Ji, Q., Haase, P., Qu, G., Hitzler, P., Stadtmoeller, S.: RaDON — repair and diag-
nosis in ontology networks. In: ESWC 2009

Ji, Q., Qi, G., Haase, P.: A relevance-directed algorithm for finding justifications
of dl entailments. In: ASWC 2009

Kalyanpur, A.: Debugging and Repair of OWL Ontologies. Ph.D. thesis, The Grad-
uate School of the University of Maryland (2006)

Kalyanpur, A., Parsia, B., Hendler, J.: A tool for working with web ontologies. In:
International Journal on Semantic Web and Information Systems. vol. 1 (2005)
Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: ISWC 2007 + ASWC 2007

Knublauch, H.: Composing the semantic web: Explaining inferences.
http://composing-the-semantic-web.blogspot.com /2007 /08 /explanining-
inferences.html

Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminolo-
gies for the description logic ALC. In: AAAT 2006

Mungall, C.: OBO Flat File Format 1.4 syntax and semantics.
ftp://ftp.geneontology.org/pub/go/www/obo-syntax.html (February 2011)

Noy, N.F.: BioPortal: Ontologies and integrated data resources at the click of a
mouse. Nucleic Acids Research 37 (May 2009)

Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32,
57-95 (1987)

Scharrenbach, T., d’Amato, C., Fanizzi, N., Griitter, R., Waldvogel, B., Bernstein,
A.: Default Logics for Plausible Reasoning with Controversial Axioms. In: Bobillo,
F. (ed.) URSW 2010 (2010)

Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI 2003

Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent
terminologies. Journal of Automated Reasoning 39, 317 — 349 (2007)
Shchekotykhin, K., Friedrich, G., Jannach, D.: On computing minimal conflicts for
ontology debugging. In: ECAT 2008 (2008)

Smith, B.: The OBO Foundary: Coordinated evolution of ontology to support
biomedical data integration. Nature Biotechnology

Stuckenschmidt, H.: Debugging OWL ontologies - a reality check. In: EON-SWSC
2008 (2008)

Suntisrivaraporn, B.: Polynomial-Time Reasoning Support for Design and Main-
tenance of Large-Scale Biomedical Ontologies. Ph.D. thesis, Technical University
of Dresden (2009)

Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A modularization-based approach
to finding all justifications for owl dl entailments. In: ASWC’08 (2008)

