
Evaluation of a layered approach to
question answering over linked data

Sebastian Walter1, Christina Unger1, Philipp Cimiano1, and Daniel Bär2?

1 CITEC, Bielefeld University, Germany
http://www.sc.cit-ec.uni-bielefeld.de/

2 Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universität Darmstadt

http://www.ukp.tu-darmstadt.de/

Abstract. We present a question answering system architecture which
processes natural language questions in a pipeline consisting of five steps:
i) question parsing and query template generation, ii) lookup in an in-
verted index, iii) string similarity computation, iv) lookup in a lexical
database in order to find synonyms, and v) semantic similarity com-
putation. These steps are ordered with respect to their computational
effort, following the idea of layered processing: questions are passed on
along the pipeline only if they cannot be answered on the basis of earlier
processing steps, thereby invoking computationally expensive operations
only for complex queries that require them. In this paper we present an
evaluation of the system on the dataset provided by the 2nd Open Chal-
lenge on Question Answering over Linked Data (QALD-2). The main,
novel contribution is a systematic empirical investigation of the impact of
the single processing components on the overall performance of question
answering over linked data.

Keywords: question answering, linked data, layered approach, experi-
mental evaluation

1 Introduction

Question answering over linked data has recently emerged as an important
paradigm allowing non-expert users to access the steadily growing amount of
data available as linked data (see [9] for a recent overview). One of the main
challenges in question answering over linked data is mapping natural language
questions into appropriate SPARQL queries or graph patterns that yield an ap-
propriate and correct answer when evaluated. A crucial subtask to this end is
to map words in the query to appropriate URIs representing their meaning. For
example, when interpreting the question When was Abraham Lincoln born? with
respect to the DBpedia dataset, the name Abraham Lincoln needs to be mapped

? Part of this work has been supported by the Klaus Tschira Foundation under project
No. 00.133.2008.

2 S. Walter, C. Unger, P. Cimiano, D. Bär

to the resource <http://dbpedia.org/resource/Abraham Lincoln>, and born
needs to be mapped to <http://dbpedia.org/ontology/birthplace>.

In this paper, we present a layered approach to question answering over
linked data. The main intuition underlying this layered approach is the idea
that a question answering system should be sensitive to the complexity of the
question, in the sense that it applies certain processing steps only if the question
cannot be answered using simpler mechanisms.

To give an idea of the various levels of difficulty, consider the following three
questions taken from the DBpedia training questions of the 2nd Open Challenge
on Question Answering over Linked Data (QALD-2, see Section 3.1 below):3

1. (a) What is the currency of the Czech Republic?
(b) SELECT DISTINCT ?uri WHERE {

res:Czech Republic dbo:currency ?uri .

}

2. (a) Who was the wife of U.S. president Lincoln?
(b) SELECT DISTINCT ?uri WHERE {

res:Abraham Lincoln dbo:spouse ?uri.

}

3. (a) Was Natalie Portman born in the United States?
(b) ASK WHERE {

res:Natalie Portman dbo:birthPlace ?city .

?city dbo:country res:United States .
}

Question 1a exemplifies the simplest case: All natural language expressions
can be mapped to DBpedia resources in the target SPARQL query 1b by sim-
ply matching the expressions (currency and Czech Republic) with the resources’
labels, in this case currency and Czech Republic. Furthermore, the resources
are directly related, so that the SPARQL query consists of one triple relating the
entity Czech Republic with its currency. This is also the case for query 2b: The
entity Abraham Lincoln is directly connected to his wife. However, matching
the expressions used in the question 2a with DBpedia concepts (U.S. president
Lincoln with Abraham Lincoln, and wife with spouse) is not straightforward
but requires searching for synonyms and lexical variants. Similarly in example
3, where the natural language term born needs to be matched with the ontol-
ogy label birth place. Moreover, the property birth place does not directly
connect the occurring entities, Natalie Portman and the United States; instead
they are connected via an intermediate node that is not expressed in the natural
language question, the SPARQL query thus has a more complex structure.

As main contribution, we present the results of a systematic evaluation of the
contribution of different state-of-the-art processing components on the overall
system. For this purpose, we use the benchmarking datasets provided by the
QALD-2 challenge. A systematic evaluation of the impact of various components

3 The following prefixes are used:
PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX res: <http://dbpedia.org/resource/>

Evaluation of a layered approach to question answering over linked data 3

on the task has so far not been provided. This layered approach also allows us to
assess the complexity of the questions in the dataset in terms of which processing
is required to actually find an answer. We report the results in Section 3 below.
Furthermore, we compare our system to the question answering systems that
participated in the QALD-2 challenge as well as to Wolfram Alpha4.

The paper is structured as follows: In Section 2 we present the architec-
ture of our system in detail. In Section 3 we report on experiments on the
QALD-2 dataset, presenting our results in terms of standard precision, recall
and F-measure figures for each processing layer, thus being able to quantify the
impact in terms of effectiveness of each layer. We also report the average times
the approach requires to answer questions depending on the processing depth.
This allows for a discussion of the trade-off between effectiveness and efficiency.
Finally, we compare our approach to related work in Section 4, before concluding
in Section 5.

2 Layered approach

The system we propose, BELA, takes a natural language question as input and
produces a SPARQL query as well as corresponding answers as output. It is
layered in the sense that it builds on a pipeline along which hypotheses for the
meaning of a natural language question are iteratively added and refined by
factoring in more and more expensive processing mechanisms. At each layer, the
best hypotheses is determined. If the confidence of the system in the hypothesis is
high enough and the constructed query actually produces answers, the processing
stops and the answers are returned.

BELA processes an incoming natural language question along the following
layers:

1 Parsing and template generation
2 Inverted index lookup
3 String similarity computation
4 Lexical expansion
5 Semantic similarity computation

We will describe each of them in more detail in the following sections.

2.1 Parsing and template generation

Each input question is parsed on the basis of its part-of-speech tags, employing
a parser based on Lexical Tree Adjoining Grammars (LTAG), in order to pro-
duce several query templates for the question. The parser has been described
in more detail in [13], so we limit our description to the output of the parser.
Parsing a natural language question produces a set of SPARQL query templates
corresponding to proto-interpretations of this question, which mirror the seman-
tic structure of the questions and only leave open slots where appropriate URIs
need to be inserted. An example is given in 4.

4 http://www.wolframalpha.com

4 S. Walter, C. Unger, P. Cimiano, D. Bär

4. (a) What is the currency of the Czech Republic?

(b) SELECT ?y WHERE {

?y -- ?p -- ?x

}

Slots:

– 〈?p, unknown, currency〉
– 〈?x, resource,Czech Republic〉

For the question in 4a the template in 4b is constructed. It specifies the
overall structure of the query, but leaves open slots for a resource expressed as
Czech Republic, which is related to ?y by means of some property denoted by
the noun currency. The dashes indicate that it is left open whether ?y is subject
or object of the property, i.e. whether the triple is ?y ?p ?x . or ?x ?p ?y .

2.2 Index lookup

Consider the example 4 above. The first step of processing this template con-
sists in a simple lookup of all slot terms in an inverted index. For indexa-
tion, we extract all concepts from DBpedia 3.7 subsumed by the ontology

and property namespace together with their rdfs:label, from which we build
an inverted index that maps each label to a set of URIs. Additionally, we in-
clude Wikipedia re-directs, such that a range of labels, e.g. IBM, I.B.M., Inter-
national Business Machine and IBM Corporation map to the same URI, in this
case <http://dbpedia.org/resource/IBM>. The resulting index contains more
than 8 million entries: 8,011,004 mappings of labels to resources, 785 mappings
of labels to classes, and 92,910 mappings of labels to properties (3,362 from the
ontology and 89,548 from the property namespace).

For the example in 4, the slot terms currency and Czech Republic are found in
the index, therefore the following two hypotheses about possible instantiattion
of the query slots with URIs are built:

5. – Slot: 〈?p,property, currency〉
– URI: <http://dbpedia.org/ontology/currency>

– Rank: 1.0

6. – Slot: 〈?x, resource,Czech Republic〉
– URI: <http://dbpedia.org/resource/Czech Republic>

– Rank: 1.0

The rank is a confidence value between 0 and 1. Here the rank is set to 1, as
we take a single direct match in the index to be a sure indicator for a successful
mapping. If several mappings are found, a hypothesis for each of them is created
(leaving disambiguation to the success or failure of these hypotheses). Also note
that the previously unknown type of ?p can now be specified as property, the
type of the found URI.

Using the above hypotheses to instantiate the SPARQL template yields the
following two alternative interpretations of the question corresponding to the
interpretations of ?y is subject or object, respectively:

Evaluation of a layered approach to question answering over linked data 5

7. (a) SELECT ?y WHERE {

?y <http://dbpedia.org/ontology/currency>

<http://dbpedia.org/resource/Czech Republic> .
}

(b) SELECT ?y WHERE {

<http://dbpedia.org/resource/Czech Republic>

<http://dbpedia.org/ontology/currency> ?y .
}

All generated queries are then sent to the SPARQL endpoint and the highest ranked
query that actually returns an answers is selected as final output.5 In our example
case, the query in 7b does return an answers and thus seems to represent a valid
interpretation of the natural language question.

In case none of the queries returns an answer, BELA proceeds with the next step.

2.3 String similarity

In case that the basic mechanism of index lookup fails to find appropriate URIs for all
slots to produce a completely instantiated SPARQL query, we use identified resources
as starting point and retrieve all their properties. As an example, consider the following
question and its corresponding template:

8. (a) How many employees does IBM have?

(b) SELECT COUNT(?y) WHERE {

?x -- ?p -- ?y

}

Slots:

– 〈?p, property, employees〉
– 〈?x, resource, IBM〉

An index lookup retrieves <http://dbpedia.org/resource/IBM>, which now serves
as starting point for finding possible instantiations for the property slot expressed by
employees. To this end, we query the dataset for labels of all properties that connect
the resource <http://dbpedia.org/resource/IBM> to other resources or to literals.
For the above example, this yields a list of about 100 properties, including for ex-
ample products, industry, foundation place, company type, number of employees

and num employees.

Next, all retrieved property labels are compared to the slot term, in our example
employees, by means of the normalized Levenshtein distance NLD between two words
w1 and w2, calculated as follows:

NLD(w1, w2) = 1− number of letter changes between w1 and w2

max(length(w1), length(w2))

5 In the case of ASK queries, however, we cannot dismiss queries on the basis of an
empty result set as they always return a boolean as answer. Since one concept found
in the index is as good as any other concept found in the index, the decision to
return a specific query as final result is postponed until the subsequent steps, when
query ranks start to vary. Then the highest ranked query above a certain threshold
(set to 0.9 in our case) is returned.

6 S. Walter, C. Unger, P. Cimiano, D. Bär

All properties that have a label with a Levenshtein distance above a certain thresh-
old, in our case established as 0.95, is added as a new hypothesis with the NLD value
as its rank. In our case the best matching property is num employees with a Leven-
shtein score of 0.73. Although this is below the threshold, the property label bears
strong similarity with the slot term employees, we therefore want to permit it as a
hypothesis. To this end, we apply an additional heuristic that assigns rank 1 to a
property if its label contains the slot term as a substring.6 Therefore both the prop-
erty <http://dbpedia.org/ontology/numberOfEmployees> as well as the property
<http://dbpedia.org/property/numEmployees> is added as hypotheses with rank 1.

Finally, this processing step yields the following query for the question How many
employees does IBM have, which retrieves the correct answer:

9. SELECT ?y WHERE {

<http://dbpedia.org/resource/IBM>

<http://dbpedia.org/ontology/numberOfEmployees> ?y .
}

2.4 Lookup in lexical database

Now consider the question Who is the mayor of Berlin. Both layers described above—
index lookup and string similarity—do not find an answer to this question as the right
interpretation involves the property <http://dbpedia.org/ontology/leader> rather
than a property with label mayor. Therefore, in a third processing step, we use a
lexico-semantic resource, in this case WordNet, to retrieve synonyms for slot terms.
The slot term mayor, for example, leads to a list containing civil authority, politician,
ex-mayor and city manager, among others. While tuning BELA on the QALD-2 training
question set for DBpedia, we found that the overall results improve if this list is further
expanded with the synonyms, hypernyms and hyponyms of all list elements; in our
example this adds authority, leader, governor and judge, among others. These synonyms
are matched to all properties retrieved for the resources explicitly mentioned in the
question (<http://dbpedia.org/resource/Berlin>in the example), and in case of a
match, an appropriate hypothesis is generated. In the case of the above question, this
leads to the following correct SPARQL query:

10. SELECT ?y WHERE {

<http://dbpedia.org/resource/Berlin>

<http://dbpedia.org/ontology/leader> ?y .
}

2.5 Semantic similarity

In case the string similarity and lexical expension steps do not find sufficiently high
ranked hypotheses, BELA tries to find suitable hypotheses by means of Explicit Se-
mantic Analysis (ESA).7

ESA is a method introduced by Gabrilovich and Markovitch [5] in order to represent
and compare texts of any length in a high-dimensional vector space. The vector space is

6 The rank is set to 1 in order to push these hypotheses above the Levenshtein thresh-
old of 0.95 and to make them fare better than purely string similar hypotheses.

7 The implementation we used is available at:
http://code.google.com/p/dkpro-similarity-asl/.

Evaluation of a layered approach to question answering over linked data 7

constructed based on a given document collection D, where the documents are assumed
to describe natural concepts such as cat or dog (a so-called concept hypothesis). In the
construction phase, a term-document matrix is built with a tf.idf weighting scheme [12]
of terms w.r.t. the documents d ∈ D. A semantic interpreter then allows to map any
given natural language text t onto concept vectors: Each word w ∈ t is represented by
the concept vector c(w) of the corresponding row in the term-document matrix, where
each vector element denotes the strength of association with a particular document
d ∈ D. For |t| > 1 (i.e., texts rather than single words) the vector c(t) constitutes
the sum of the individual word vectors c(w) for all w ∈ t. Finally the two concepts
vectors are compared using cosine similarity, thus yielding a semantic similarity score
for the compared texts. While in the original work of Gabrilovich and Markovitch (2007)
Wikipedia was used as background knowledge source, recent work has shown that also
Wiktionary8 and WordNet [4] can be used as background document collections. Initial
experiments showed that using Wikipedia as background document collection produces
the best results on tour task. In the following, all experiments involving ESA are thus
carried out using Wikipedia as background knowledge base.9

Applying ESA to the question answering task allows us to relate, e.g., the expres-
sion painted and the ontology label artist, which fail to be connected by both string
similarity and WordNet expanison.

3 Experiments

3.1 Evaluation set-up

BELA has been evaluated on the DBpedia training and test question sets provided
by the 2nd Open Challenge on Question Answering over Linked Data10 (QALD-2).
A more detailed description of these datasets and the procedure for constructing it
can be found in [8]. Both datasets comprise 100 natural language questions annotated
with SPARQL queries and answers. From these questions we removed all out-of-scope
questions (questions that cannot be answered within the dataset) as well as questions
relying on namespaces not yet part of our index, namely YAGO and FOAF. This
filtering led to remaining 75 training and 72 test questions. In order to ensure a fair
evaluation, we used only the training set for developing and fine-tuning the system,
e.g. for determining the Levenshtein and ESA thresholds, and used the test set for the
purpose of evaluation only. By manual tuning on the training dataset, the threshold
for the normalized Levenshtein distance was set to 0.95, while the threshold for ESA
was set to 0.4.

For evaluation we used the tool provided by the QALD-2 challenge. For each ques-
tion q, precision, recall and F-measure are computed as follows:

Recall(q) =
number of correct system answers for q

number of gold standard answers for q

Precision(q) =
number of correct system answers for q

number of system answers for q

8 http://www.wiktionary.org
9 Results for all tested dictionaries can be found at http://www.sc.cit-ec.

uni-bielefeld.de/bela.
10 http://www.sc.cit-ec.uni-bielefeld.de/qald-2

8 S. Walter, C. Unger, P. Cimiano, D. Bär

Module Answered Coverage Correct R P F F ′

DBpedia Train

Index lookup 15 0.2 7 0.67 0.61 0.64 0.30

+ String similarity 29 0.38 16 0.77 0.73 0.75 0.50

+ Lexical expansion 37 0.49 20 0.74 0.69 0.71 0.57

+ Semantic similarity 39 0.52 22 0.75 0.71 0.73 0.60

DBpedia Test

Index lookup 11 0.15 9 0.909 0.84 0.87 0.25

+ String similarity 20 0.27 13 0.85 0.74 0.79 0.40

+ Lexical expansion 29 0.4 16 0.71 0.63 0.67 0.50

+ Semantic similarity 31 0.43 17 0.73 0.62 0.67 0.52

Table 1. Results over the 75 DBpedia train and 72 DBpedia test questions

F-Measure(q) =
2 ∗ Precision(q)× Recall(q)

Precision(q) + Recall(q)

On the basis of these, overall precision and recall values P and R, as well as an overall
F-measure value F are computed as the average mean of the precision, recall and F-
measure values for all questions. Additionally, we compute coverage as the percentage
of questions for which an answer was provided: Coverage = number of queries with answer

|Q| .
In order to also take into account the balance between F-measure and coverage, we
introduce an F-measure F ′ as the harmonic mean of the coverage and the overall
F-Measure F ′ = 2×Coverage×F

Coverage+F
.

3.2 Results

Table 1 shows the results on the DBpedia training and test sets. It lists the number of
answered queries, the coverage, the number of questions that were answered perfectly
as well as the average precision, recall and F-measures F and F ′.11 The behavior of
the system is as expected in the sense that the overall performance (F ′) increases with
each processing step in the pipeline, where string similarity computation clearly has
the most impact on the results, increasing performance by 20% on train and 15% on
test. The use of a lexical database (in our case WordNet) increases the results by 7% on
train and 10% on test, followed by the semantic similarity component, which increases
results by 3% on train and 2% on test. Thus all components provide an added value
to the overall pipeline. Table 2 lists the number of questions that can be answered at
a certain processing step in the pipeline but could not be answered earlier.

3.3 Comparison with state-of-the-art systems

Table 3 compares the results of our system BELA (traversing the full pipeline) with the
results of the systems that participated in the QALD-2 challenge and with Wolfram
Alpha.12 In addition to the number of correctly answered questions, we list the number

11 A more detailed listing of the results for each question can be found at http://www.
sc.cit-ec.uni-bielefeld.de/bela.

12 In order to allow for a comparison with Wolfram Alpha, we submitted the test ques-
tions to the Wolfram Alpha portal and extracted and verified the results manually.

Evaluation of a layered approach to question answering over linked data 9

Module Train % Test %

String similarity 24 61 20 64
Lexical expansion 10 25 11 35
Semantic similarity 2 5 2 6

Table 2. How many questions require the pipeline up to which module to be answered?

of questions for which a partially correct answer was provided, i.e. questions with an
F-measure strictly between 0 and 1.

The comparison shows that BELA ranges, from the point of view of overall per-
formance, in the middle field, outperforming Wolfram Alpha in particular. The main
difference between our system and the two systems that outperform it—SemSeK and
MHE—is that the latter achieve a much higher coverage at the price of a much lower
precision.

System Answered Coverage Correct Partially R P F F ′

SemSeK 80 0.8 32 7 0.44 0.48 0.46 0.58

MHE 97 0.97 30 12 0.36 0.4 0.38 0.54

BELA 31 0.31 17 5 0.73 0.62 0.67 0.42

WolframAlpha 51 0.51 15 2 0.32 0.3 0.309 0.38

QAKiS 35 0.35 11 4 0.39 0.37 0.38 0.36

Alexandria 25 0.25 5 10 0.43 0.46 0.45 0.32

Table 3. Results compared with results from the participants of the QALD-2 challenge
(with coverage calculated over all 100 questions)

3.4 Performance

The following table shows the average time for answering a question (in seconds, cal-
culated over the train and test dataset):13

Index lookup + String similarity + Lexical expansion + Semantic similarity

4.5 5.2 5.4 16.5

The average time for answering a question, to no or little surprise, increases when
increasing the number of modules used by the system. However, the average cost of
the index lookup, string similarity and lexical expansion steps is very similar; a signif-
icant increase in fact arises only when adding semantic similarity to the computation,
raising the average time per second by around 11 seconds, while providing only a 2%
performance increase.

The parsing and template generation step takes an average of 1.7 seconds per ques-
tion. In future work, we will optimize the index lookup and pre-caching mechanism,
now taking up an average of two seconds per questions. Saving the pre-cached infor-
mations after an experiment, the average time in the next experiment drops to around
4.6 second per question for the second and third step of the pipeline.

13 Performed on a machine with a IntelR© CoreTM i3-2310M CPU @ 2.10GHz.

10 S. Walter, C. Unger, P. Cimiano, D. Bär

3.5 Manual, query-driven extension of lexical coverage

Although similarity and relatedness measures can bridge the gap between natural lan-
guage terms and ontology labels to a certain extent, they fail when the gap is too
big. For example, all modules included in BELA failed to relate created and author,
or die and deathCause. Now, mappings that are notoriously difficult to find for a ma-
chine could be easy to create by someone with basic domain knowledge. Considering,
for example, a question answering system that logs the questions it fails to answer,
a maintainer could manually specify index mappings for natural language expressions
that are often used.

In order to show how little manual effort is required to increase precision and
recall, we additionally report on a run of the full pipeline of the system enriched
with an additional, manually created index that contains 14 mappings from nat-
ural language terms to URIs which BELA failed to identify, for example high →
<http://dbpedia.org/ontology/elevation>.14 Given such a manual index with 14
entries, the results increase, as shown in Table 4. Note that even the results on the test
question set slightly increase, although when building the manual index only training
questions were taken into account. Thus a relatively small manual effort can help bridg-
ing the gap between natural language expressions and ontology labels in case similarity
and relatedness measures fail.

Answered Coverage Correct Partially R P F F ′

Train (without) 39 0.52 22 11 0.75 0.71 0.73 0.60
Train (with) 40 0.53 26 10 0.80 0.81 0.80 0.63

Test (without) 31 0.43 17 6 0.73 0.62 0.67 0.52
Test (with) 32 0.44 18 6 0.74 0.639 0.688 0.53

Table 4. Results of full pipeline with manually extended index

4 Discussion and related work

We can identify two major challenges when constructing SPARQL queries for natural
language questions:

– Briding the lexical gap, i.e. the gap between natural language expressions and
ontology labels (e.g. mayor and leader, written and author)

– Bridging the structural gap, i.e. the gap between the semantic structure of the
natural language question and the structure of the data

The lexical gap is quite well covered by the tools exploited in our pipeline, i.e. string
similarity as well as lexico-semantic resources and semantic relatedness measures, all
of which are quite standard in current Semantic Web question answering systems. An
additional, recently emerging tool for bridging the lexical gap are repositories of natural
language representations of Semantic Web predicates, acquired from a structured data
repository together with a text corpus. Examples are the BOA pattern library [6] (used,

14 The complete list can be found at http://www.sc.cit-ec.uni-bielefeld.de/bela.

Evaluation of a layered approach to question answering over linked data 11

e.g., in TBSL [13]) and the WikiFramework repository [10] (used, e.g. in QUAKiS [3]).
Both go beyond semantic similarity measures in also involving co-occurence patterns.

The structural gap, on the other hand, is less often addressed. Most systems map
natural language questions to triple-based representations and simply fail if this rep-
resentation does not match the actual data. A simple example is the query Give me all
cities in Germany. Our system starts looking for resources of class city that are directly
related to the entity Germany; in the actual data, however, some cities are only indi-
rectly connected to their country, e.g. through their federal state. Such a case requires a
search for indirect relationships in case direct ones cannot be found. PowerAqua [7], an
open-domain question answering system for the Semantic Web, does exactly this. After
mapping natural language questions to a triple-based representation and discovering
relevant ontologies, PowerAqua first tries to find entity mappings, exploiting different
word sense disambiguation techniques. Then it searches for direct relationships between
the candidate entities, using WordNet expansion and also different filtering heuristics
to limit the search space. If no direct relationships are found, indirect relationships are
explored.

A slightly more difficult example is the question When did Germany join the EU.
Our template generation process assumes a representation with two entities, Germany
and the EU, and a relation join connecting them; PowerAqua15 assumes a triple rep-
resentation of form 〈date,join,Germany〉,〈Germany,?,EU〉. The actual DBpedia data,
however, relates Germany to a date literal via the property accessioneudate, thus
both representations fail to match it. Such cases therefore require more sophisticated
techniques for inferring or learning the target triple structure from the data or an un-
derlying ontology. In order to bridge the structural gap, a system architecture like ours
would therefore require further iterations: Once the whole pipeline is traversed without
having constructed a successful query, the template structure needs to be adapted or
extended, triggering a new pipeline cycle.

We conjecture that a proper approach to bridging the structural gap is necessary
to further increase the coverage and performance of question answering systems sig-
nificantly, and that without such an approach, comprehensive question answering over
linked data will fail, just like without a proper approach to bridging the lexical gap.

Another major challenge for question answering over linked data is the processing
of questions with respect to not only one but several datasets (ultimately the whole
linked data cloud), which includes the search for relevant ontologies as well as the
integration of query parts constructed from different sources. This challenge has so far
only been taken up by PowerAqua. Also, evaluating and comparing question answering
systems in such an open-domain scenario is inherently difficult.

5 Conclusion

We have presented a layered architecture for question answering over linked data that
relies on an ordered processing pipeline consisting of the following steps: an inverted
index lookup, the computation of string similarities, a lookup in a lexical database such
as WordNet and a semantic similarity computation step based on Explicit Semantic
Analysis. We have systematically evaluated the contribution of each of these compo-
nent on the benchmarking dataset provided by the 2nd Open Challenge on Question

15 Accessed through the online demo at http://poweraqua.open.ac.uk:8080/

poweraqualinked/jsp/.

12 S. Walter, C. Unger, P. Cimiano, D. Bär

Answering over Linked Data (QALD-2), showing that each of these processing compo-
nents has an important impact on the task, increasing coverage and F-measure while
obviously increasing the overall processing time. We have also shown that our approach
can compete with other state-of-the-art systems, e.g. clearly outperforming Wolfram
Alpha. Finally, we have shown how an iterative improvement lifecycle that adds ad-
ditional mappings to the system can substantially improve the performance of the
system. Future work will consider adding additional lexical knowledge to the system
(e.g. Wiktionary and lexical pattern libraries), and will especially focus on adding it-
erations that adapt the structure of the query templates, in order to bridge the gap
between the semantic structure of the natural language question and the structure of
the dataset.

References

1. M. Anderka, B. Stein: The ESA Retrieval Model Revisited. In: Proc. of the 32th
Annual International ACM SIGIR Conference (2009) 670–671

2. C. Bizer, T. Heath, T. Berners-Lee: Linked Data – The Story So Far. Int. Journal
on Semantic Web and Information Systems 5 (2009)

3. E. Cabrio, A. Palmero Aprosio, J. Cojan, B. Magnini, F. Gandon, A. Lavelli:
QAKiS @ QALD-2. In: Proc. of ILD 2012, http://greententacle.techfak.

uni-bielefeld.de/~cunger/qald/2/proceedings_ILD2012.pdf

4. C. Fellbaum: WordNet: An Electronic Lexical Database. MIT Press (1998)
5. E. Gabrilovich, S. Markovitch: Computing Semantic Relatedness using Wikipedia-

based Explicit Semantic Analysis. In: Proc. of the 20th International Joint Confer-
ence on Artificial Intelligence (2007) 1606–1611 ibitemqald V. Lopez, C. Unger, P.
Cimiano, E. Motta: Evaluating Question Answering over Linked Data. Journal of
Web Semantics, under review.

6. D. Gerber, A.-C. Ngonga Ngomo: Bootstrapping the Linked Data Web. In: Proc. of
WekEx at ISWC 2011.

7. V. Lopez, M. Fernández, E. Motta, N. Stieler: PowerAqua: supporting users in
querying and exploring the Semantic Web content. Semantic Web journal, to appear.
Available from http://www.semantic-web-journal.net/

8. V. Lopez, C. Unger, P. Cimiano, E. Motta: Evaluating Question Answering over
Linked Data. Journal of Web Semantics (under review)

9. V. Lopez, V. Uren, M. Sabou, E. Motta: Is Question Answering fit for the Semantic
Web? A Survey. Semantic Web Journal 2 (2011) 125–155

10. R. Mahendra, L. Wanzare, R. Bernardi, A. Lavelli, B. Magnini: Acquiring Rela-
tional Patterns from Wikipedia: A Case Study. In: Proc. of the 5th Language and
Technology Conference (2011)

11. G.A. Miller: WordNet: A Lexical Database for English. In: Communications of the
ACM 38 (1995) 39–41

12. G. Salton, M.J. McGill: Introduction to Modern Information Retrieval. McGraw-
Hill (1983)

13. C. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo, D. Gerber, P. Cimiano:
Template-Based Question Answering over RDF data. In: Proc. of WWW 2012

14. T. Zesch, C. Müller, I. Gurevych: Using Wiktionary for Computing Semantic Re-
latedness. In: Proc. of the 23rd AAAI Conference on Artificial Intelligence (2008)
861–867

