
Jena-HBase: A Distributed, Scalable and

Efficient RDF Triple Store

Vaibhav Khadilkar1, Murat Kantarcioglu1, Bhavani Thuraisingham1, and
Paolo Castagna2

1 The University of Texas at Dallas
2 Talis Systems Ltd.

Abstract. Lack of scalability is one of the most significant problems
faced by single machine RDF data stores. The advent of Cloud Comput-
ing has paved a way for a distributed ecosystem of RDF triple stores that
can potentially allow up to a planet scale storage along with distributed
query processing capabilities. Towards this end, we present Jena-HBase,
a HBase backed triple store that can be used with the Jena framework.
Jena-HBase provides end-users with a scalable storage and querying so-
lution that supports all features from the RDF specification.

1 Introduction

The simplest way to store RDF triples comprises a relation/table of three columns,
one each for subjects, predicates and objects. However, this approach suffers from
lack of scalability and abridged query performance, as the single table becomes
long and narrow when the number of RDF triples increases [1]. The approach is
not scalable since the table is usually located on a single machine. In addition,
query performance is diminished since a query requires several self-joins with the
same table. There have been several approaches, for e.g. [2], which modify the
single-table storage schema to improve query performance. Nevertheless, these
approaches suffer from the scalability problem, which can be solved by moving
from a single-machine to a multi-machine configuration. The cloud computing
paradigm has made it possible to harness the processing power of multiple ma-
chines in parallel. Tools such as Hadoop and HBase provide advantages such as
fault tolerance and optimizations for real time queries. In this paper, we present
Jena-HBase3, a HBase backed triple store that can be used with the Jena frame-
work along with a preliminary experimental evaluation of our prototype.

Our work focuses on the creation of a distributed RDF storage framework,
thereby mitigating the scalability issue that exists with single-machine systems.
The motivation to opt for Jena is its widespread acceptance, and its built-in sup-
port for manipulating RDF data as well as developing ontologies. Further, HBase
was selected for the storage layer for two reasons: (i) HBase is a column-oriented
store and in general, a column-oriented store performs better than row-oriented
stores [1]. (ii) Hadoop comprises Hadoop Distributed File System (HDFS), a dis-
tributed file system that stores data, and MapReduce, a framework for processing
data stored in HDFS. HBase uses HDFS for data storage but does not require
MapReduce for accessing data. Thus, Jena-HBase does not require the imple-
mentation of a MapReduce-based query engine for executing queries on RDF

3 https://github.com/castagna/hbase-rdf, https://github.com/vaibhavkhadilkar/hbase-rdf

triples. In contrast, existing systems that use a MapReduce-based query engine
for processing RDF data are optimized for query performance, however, they
are currently unable to support all features from the RDF specification. Our
motivation with Jena-HBase is to provide end-users with a cloud-based RDF
storage and querying API that supports all features from the RDF specification.

Our contributions: Jena-HBase provides the following: (a) A variety of
custom-built RDF data storage layouts for HBase that provide a tradeoff in
terms of query performance/storage. (b) Support for reification, inference and
SPARQL processing through the implementation of appropriate Jena interfaces.

2 Jena-HBase Architecture

Fig. 1. Jena-HBase - Architectural Overview

Fig. 1 presents an overview of the architecture employed by Jena-HBase.
Jena-HBase uses the concept of a store to provide data manipulation capabili-
ties on underlying HBase tables. A store represents a single RDF dataset and
can be composed of several RDF graphs, each with its own storage layout. A lay-
out uses several HBase tables with different schemas to store RDF triples; each
layout provides a tradeoff in terms of query performance/storage. All operations
on a RDF graph are implicitly converted into operations on the underlying lay-
out. These operations include: (a) Formatting a layout, i.e., deleting all triples
while preserving tables (Formatter block). (b) Loading-unloading triples into
a layout (Loader block). (c) Querying a layout for triples that match a given
< S,P,O > pattern (Query Runner block). (d) Additional operations include
the following: (i) Maintaining an HBase connection (Connection block). (ii)
Maintaining configuration information for each RDF graph (Config block).

We briefly give a summary of the storage schema used by each layout in
Table 1. A detailed description of each layout is further given in [3].

3 Experimental Evaluation

We have performed benchmark experiments using SP2Bench (non-inference queries)
[4] and LUBM (inference queries) [5] to determine the best layout currently avail-
able in Jena-HBase, as well as to compare the performance of the best layout
with Jena TDB. We have compared Jena-HBase only with Jena TDB and not
with other Hadoop-based systems for the following reasons: (i) Jena TDB gives

Table 1. Storage schemas for Jena-HBase layouts

Layout Type Storage Schema

Simple 3 tables each indexed by subjects, predicates and objects

Vertically Partitioned (VP)
For every unique predicate, two tables, each indexed by
subjects and objects

Indexed
Six tables representing the six possible combinations of
a triple namely, SPO, SOP, PSO, POS, OSP and OPS

VP and Indexed VP layout with additional tables for SPO, OSP and OS

Hybrid Simple + VP layouts

Hash
Hybrid layout with hash values for nodes and a separate
table containing hash-to-node mappings

the best query performance of all available Jena storage subsystems. (ii) The
available Hadoop-based systems do not implement all features from the RDF
specification. In this section, we show results only for Q1 and Q9 of SP2Bench
and Q1 and Q10 of LUBM, however, these results are indicative of the overall
trend [3]. Additionally, the figures only show query times and do not include
loading times. Finally, as a part of the procedure to determine the best layout,
we ran both benchmarks over several graph sizes, but we show results only for
a graph of 250137 triples for SP2Bench and for a graph of 5 universities (≈
560K triples) for LUBM (Fig. 2). Although we used a small graph size, it is still
sufficient for determining the best Jena-HBase layout. Since LUBM contains
inference queries, we used the Pellet reasoner (v2.3.0) to perform inference.

 1

 2

 3

Layout Type

Q
u
e
ry

in
g
 T

im
e
 (

s
e
c
)

Graph Querying - Q1

Simple
Vertically-Partitioned

Indexed
VP-Indexed

Hybrid
Hash

 1000

 2000

 3000

 4000

Layout Type

Q
u
e
ry

in
g
 T

im
e
 (

s
e
c
)

Graph Querying - Q9

Simple
Vertically-Partitioned

Indexed
VP-Indexed

Hybrid
Hash

 20

 40

 60

 80

 100

Layout Type

Q
u

e
ry

in
g

 T
im

e
 (

s
e

c
)

Graph Querying - Q1

Simple
Vertically-Partitioned

Indexed
VP-Indexed

Hybrid
Hash 50

 100

 150

Layout Type

Q
u

e
ry

in
g

 T
im

e
 (

s
e

c
)

Graph Querying - Q10

Simple
Vertically-Partitioned

Indexed
VP-Indexed

Hybrid
Hash

Fig. 2. Comparison of layouts for SP2Bench (Q1 and Q9) and LUBM (Q1 and Q10)

Fig. 2 shows a comparison of all layouts for Q1 and Q9 of SP2Bench and Q1
and Q10 of LUBM. We see that the Hybrid layout gives the best results since
it combines the advantages of the Simple (Q9 of SP2Bench and Q10 of LUBM)
and VP (Q1 of SP2Bench) layouts. The Indexed, VP-Indexed and Hash layouts
require longer querying times, since they require multiple row lookups in the
SPO, SOP, PSO, POS, OSP and OPS tables (Indexed case) or the SPO, OSP
and OS tables (VP-Indexed case) or the mapping table (Hash case).

Fig. 3 shows a comparison of the Hybrid layout with Jena TDB for increasing
graph sizes. Note that Jena-HBase values have been scaled down for Q1 (by 1000)
and Q9 (by 100) of SP2Bench and for Q1 (by 10) of LUBM for a clear comparison.
We see that TDB outperforms the Hybrid layout in the 1M to 25M range for
SP2Bench and in the N = 50 to 500 range (N is the number of universities) for

 0.015

 0.03

 0.045

 0.06

1M 5M 15M 25M 100M

Q
u

e
ry

in
g

 T
im

e
 (

s
e

c
)

Graph Querying - Q1

M

TDB
Hybrid

 40

 80

 120

 160

 200

1M 5M 15M 25M 100M

Q
u

e
ry

in
g

 T
im

e
 (

s
e

c
)

Graph Querying - Q9

M

TDB
Hybrid

 100

 200

 300

N=50
N=100

N=500
N=1000

Q
u

e
ry

in
g

 T
im

e
 (

s
e

c
)

Graph Querying - Q1

M

TDB
Hybrid

 3000

 6000

 9000

 12000

N=50
N=100

N=500
N=1000

Q
u

e
ry

in
g

 T
im

e
 (

s
e

c
)

Graph Querying - Q10

M M M M

TDB
Hybrid

Fig. 3. Comparison of Jena TDB vs. Jena-HBase Hybrid layout for SP2Bench (Q1 and
Q9) and LUBM (Q1 and Q10). Note that M denotes an Out Of Memory exception.

Q1 of LUBM. This is expected since for these ranges TDB is able to create and
maintain the necessary B+ graph indices in memory, thus resulting in a shorter
query execution time. Jena-HBase requires multiple graph pattern matches on
increasing graph sizes over a distributed cluster, thus making it slower than TDB.
We also observe that TDB fails to execute Q10 of LUBM for the N = 50 to 500
range, since the test program runs out of memory during the process of inference
for this range. The Hybrid layout successfully executes Q10 for this range, since
the reasoner is able to construct the necessary inference related data structures.
Finally, we observe that Jena-HBase is more scalable than TDB which fails to
construct graphs with 100M triples for SP2Bench and N = 1000 universities for
LUBM, thereby preventing the execution of any query on these graphs.

4 Conclusion
In this paper, we show that creating a distributed RDF storage framework with
existing cloud computing tools results in a scalable data processing solution.
Additionally, our solution maintains a reasonable query execution time overhead
when compared with a single-machine RDF storage framework (viz. Jena TDB).

5 Acknowledgements

This work was partially supported by The Air Force Office of Scientific Re-
search MURI-Grant FA-9550-08-1-0265 and Grant FA-9550-08-1-0260, National
Institutes of Health Grant 1R01LM009989, National Science Foundation (NSF)
Grant Career-CNS-0845803, and NSF Grants CNS-0964350, CNS-1016343 and
CNS-1111529. We thank Dr. Robert Herklotz for his support.

References

1. D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable Semantic Web
Data Management Using Vertical Partitioning. In VLDB, pages 411–422, 2007.

2. K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds. Efficient RDF Storage and
Retrieval in Jena2. Technical report, HP Laboratories, 2003.

3. V. Khadilkar, M. Kantarcioglu, P. Castagna, and B. Thuraisingham. Jena-HBase: A
Distributed, Scalable and Efficient RDF Triple Store. Technical report, 2012. http:
//www.utdallas.edu/~vvk072000/Research/Jena-HBase-Ext/tech-report.pdf.

4. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A SPARQL Per-
formance Benchmark. In ICDE, pages 222–233, 2009.

5. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base
systems. J. Web Sem., 3(2-3):158–182, 2005.

